Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34171305

RESUMO

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Assuntos
Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fases de Leitura Aberta/genética , Peptídeos/imunologia , Proteoma/imunologia , SARS-CoV-2/imunologia , Células A549 , Alelos , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/imunologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Peptídeos/química , Linfócitos T/imunologia
2.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37301199

RESUMO

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Captana , SARS-CoV-2 , Antígenos HLA , Epitopos de Linfócito T , Peptídeos
3.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37023751

RESUMO

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Assuntos
Epitopos de Linfócito T , Peptídeos , Humanos , Animais , Camundongos , Bovinos , Ligantes , Ligação Proteica , Galinhas/metabolismo , Aprendizado de Máquina , Antígenos de Histocompatibilidade Classe II , Alelos
4.
Semin Immunol ; 66: 101708, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621290

RESUMO

The identification of T-cell epitopes is key for a complete molecular understanding of immune recognition mechanisms in infectious diseases, autoimmunity and cancer. T-cell epitopes further provide targets for personalized vaccines and T-cell therapy, with several therapeutic applications in cancer immunotherapy and elsewhere. T-cell epitopes consist of short peptides displayed on Major Histocompatibility Complex (MHC) molecules. The recent advances in mass spectrometry (MS) based technologies to profile the ensemble of peptides displayed on MHC molecules - the so-called immunopeptidome - had a major impact on our understanding of antigen presentation and MHC ligands. On the one hand, these techniques enabled researchers to directly identify hundreds of thousands of peptides presented on MHC molecules, including some that elicited T-cell recognition. On the other hand, the data collected in these experiments revealed fundamental properties of antigen presentation pathways and significantly improved our ability to predict naturally presented MHC ligands and T-cell epitopes across the wide spectrum of MHC alleles found in human and other organisms. Here we review recent computational developments to analyze experimentally determined immunopeptidomes and harness these data to improve our understanding of antigen presentation and MHC binding specificities, as well as our ability to predict MHC ligands. We further discuss the strengths and limitations of the latest approaches to move beyond predictions of antigen presentation and tackle the challenges of predicting TCR recognition and immunogenicity.


Assuntos
Epitopos de Linfócito T , Neoplasias , Humanos , Epitopos de Linfócito T/metabolismo , Ligantes , Apresentação de Antígeno , Peptídeos
5.
Semin Immunol ; 66: 101727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764021

RESUMO

The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos HLA , Apresentação de Antígeno , Peptídeos
6.
Semin Immunol ; 67: 101758, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027981

RESUMO

Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Imunoterapia , Peptídeos
7.
Semin Immunol ; 66: 101730, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827760

RESUMO

In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/terapia , Peptídeos , Linfócitos T , Espectrometria de Massas
8.
Semin Immunol ; 66: 101733, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841147

RESUMO

Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Antígenos de Neoplasias , Imunoterapia , Linfócitos T , Peptídeos
9.
Semin Immunol ; 66: 101725, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706520

RESUMO

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Epitopos de Linfócito T , SARS-CoV-2 , Antígenos de Histocompatibilidade Classe I
10.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487848

RESUMO

The major histocompatibility complex (MHC) encodes a range of immune response genes, including the human leukocyte antigens (HLAs) in humans. These molecules bind peptide antigens and present them on the cell surface for T cell recognition. The repertoires of peptides presented by HLA molecules are termed immunopeptidomes. The highly polymorphic nature of the genres that encode the HLA molecules confers allotype-specific differences in the sequences of bound ligands. Allotype-specific ligand preferences are often defined by peptide-binding motifs. Individuals express up to six classical class I HLA allotypes, which likely present peptides displaying different binding motifs. Such complex datasets make the deconvolution of immunopeptidomic data into allotype-specific contributions and further dissection of binding-specificities challenging. Herein, we developed MHCpLogics as an interactive machine learning-based tool for mining peptide-binding sequence motifs and visualization of immunopeptidome data across complex datasets. We showcase the functionalities of MHCpLogics by analyzing both in-house and published mono- and multi-allelic immunopeptidomics data. The visualization modalities of MHCpLogics allow users to inspect clustered sequences down to individual peptide components and to examine broader sequence patterns within multiple immunopeptidome datasets. MHCpLogics can deconvolute large immunopeptidome datasets enabling the interrogation of clusters for the segregation of allotype-specific peptide sequence motifs, identification of sub-peptidome motifs, and the exportation of clustered peptide sequence lists. The tool facilitates rapid inspection of immunopeptidomes as a resource for the immunology and vaccine communities. MHCpLogics is a standalone application available via an executable installation at: https://github.com/PurcellLab/MHCpLogics.


Assuntos
Visualização de Dados , Peptídeos , Humanos , Peptídeos/química , Antígenos HLA/genética , Antígenos de Histocompatibilidade , Aprendizado de Máquina , Análise por Conglomerados
11.
Mol Cell Proteomics ; 23(1): 100689, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043703

RESUMO

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but little is known about their origin and potential for biomarker discovery in this readily available biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited sensitivity, typically requiring several mL of plasma. Here, we take advantage of recent improvements in the throughput and sensitivity of mass spectrometry (MS)-based proteomics to develop a highly sensitive, automated, and economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5000 HLA class I peptides from only 200 µl of plasma, in just 30 min. Our technology revealed that the plasma immunopeptidome of healthy donors is remarkably stable throughout the year and strongly correlated between individuals with overlapping HLA types. Immunopeptides originating from diverse tissues, including the brain, are proportionately represented. We conclude that sHLAs are a promising avenue for immunology and potentially for precision oncology.


Assuntos
Neoplasias , Humanos , Estreptavidina , Medicina de Precisão , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Peptídeos/metabolismo , Espectrometria de Massas , Anticorpos
12.
Mol Cell Proteomics ; 23(9): 100823, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39095021

RESUMO

Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.


Assuntos
Espectrometria de Massas , Peptídeos , Proteômica , Humanos , Proteômica/métodos , Peptídeos/imunologia , Peptídeos/metabolismo , Espectrometria de Massas/métodos , Complexo Principal de Histocompatibilidade/imunologia , Animais , Apresentação de Antígeno/imunologia , Neoplasias/imunologia
13.
Mol Cell Proteomics ; 23(4): 100743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403075

RESUMO

Discovering noncanonical peptides has been a common application of proteogenomics. Recent studies suggest that certain noncanonical peptides, known as noncanonical major histocompatibility complex-I (MHC-I)-associated peptides (ncMAPs), that bind to MHC-I may make good immunotherapeutic targets. De novo peptide sequencing is a great way to find ncMAPs since it can detect peptide sequences from their tandem mass spectra without using any sequence databases. However, this strategy has not been widely applied for ncMAP identification because there is not a good way to estimate its false-positive rates. In order to completely and accurately identify immunopeptides using de novo peptide sequencing, we describe a unique pipeline called proteomics X genomics. In contrast to current pipelines, it makes use of genomic data, RNA-Seq abundance and sequencing quality, in addition to proteomic features to increase the sensitivity and specificity of peptide identification. We show that the peptide-spectrum match quality and genetic traits have a clear relationship, showing that they can be utilized to evaluate peptide-spectrum matches. From 10 samples, we found 24,449 canonical MHC-I-associated peptides and 956 ncMAPs by using a target-decoy competition. Three hundred eighty-seven ncMAPs and 1611 canonical MHC-I-associated peptides were new identifications that had not yet been published. We discovered 11 ncMAPs produced from a squirrel monkey retrovirus in human cell lines in addition to the two ncMAPs originating from a complementarity determining region 3 in an antibody thanks to the unrestricted search space assumed by de novo sequencing. These entirely new identifications show that proteomics X genomics can make the most of de novo peptide sequencing's advantages and its potential use in the search for new immunotherapeutic targets.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Peptídeos/metabolismo , Peptídeos/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteômica/métodos , RNA-Seq/métodos , Animais
14.
Mol Cell Proteomics ; 23(9): 100825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111711

RESUMO

Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.


Assuntos
Mutação , Proteômica , Fluxo de Trabalho , Humanos , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas/métodos , Epitopos/imunologia , Neoplasias/imunologia , Peptídeos , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Espectrometria de Massa com Cromatografia Líquida
15.
Mass Spectrom Rev ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152539

RESUMO

Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.

16.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572790

RESUMO

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Assuntos
Biossíntese de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteômica/métodos , Perfil de Ribossomos , Ribossomos/metabolismo , Fases de Leitura Aberta
17.
Mol Cell Proteomics ; 22(4): 100519, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828127

RESUMO

Posttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes. Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA class-I and class-II complexes. Our results indicate that HLA class-I-spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%) yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor, and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Splicing de RNA , Peptídeos/metabolismo
18.
Mol Cell Proteomics ; 22(4): 100515, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796644

RESUMO

Immunopeptidomes are the peptide repertoires bound by the molecules encoded by the major histocompatibility complex [human leukocyte antigen (HLA) in humans]. These HLA-peptide complexes are presented on the cell surface for immune T-cell recognition. Immunopeptidomics denotes the utilization of tandem mass spectrometry to identify and quantify peptides bound to HLA molecules. Data-independent acquisition (DIA) has emerged as a powerful strategy for quantitative proteomics and deep proteome-wide identification; however, DIA application to immunopeptidomics analyses has so far seen limited use. Further, of the many DIA data processing tools currently available, there is no consensus in the immunopeptidomics community on the most appropriate pipeline(s) for in-depth and accurate HLA peptide identification. Herein, we benchmarked four commonly used spectral library-based DIA pipelines developed for proteomics applications (Skyline, Spectronaut, DIA-NN, and PEAKS) for their ability to perform immunopeptidome quantification. We validated and assessed the capability of each tool to identify and quantify HLA-bound peptides. Generally, DIA-NN and PEAKS provided higher immunopeptidome coverage with more reproducible results. Skyline and Spectronaut conferred more accurate peptide identification with lower experimental false-positive rates. All tools demonstrated reasonable correlations in quantifying precursors of HLA-bound peptides. Our benchmarking study suggests a combined strategy of applying at least two complementary DIA software tools to achieve the greatest degree of confidence and in-depth coverage of immunopeptidome data.


Assuntos
Benchmarking , Peptídeos , Humanos , Peptídeos/análise , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Antígenos de Histocompatibilidade Classe II
19.
Mol Cell Proteomics ; 22(6): 100563, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142057

RESUMO

Comprehensive and in-depth identification of the human leukocyte antigen class I (HLA-I) and class II (HLA-II) tumor immunopeptidome can inform the development of cancer immunotherapies. Mass spectrometry (MS) is a powerful technology for direct identification of HLA peptides from patient-derived tumor samples or cell lines. However, achieving sufficient coverage to detect rare and clinically relevant antigens requires highly sensitive MS-based acquisition methods and large amounts of sample. While immunopeptidome depth can be increased by off-line fractionation prior to MS, its use is impractical when analyzing limited amounts of primary tissue biopsies. To address this challenge, we developed and applied a high-throughput, sensitive, and single-shot MS-based immunopeptidomics workflow that leverages trapped ion mobility time-of-flight MS on the Bruker timsTOF single-cell proteomics system (SCP). We demonstrate greater than twofold improved coverage of HLA immunopeptidomes relative to prior methods with up to 15,000 distinct HLA-I and HLA-II peptides from 4e7 cells. Our optimized single-shot MS acquisition method on the timsTOF SCP maintains high coverage, eliminates the need for off-line fractionation, and reduces input requirements to as few as 1e6 A375 cells for >800 distinct HLA-I peptides. This depth is sufficient to identify HLA-I peptides derived from cancer-testis antigen and noncanonical proteins. We also apply our optimized single-shot SCP acquisition methods to tumor-derived samples, enabling sensitive, high-throughput, and reproducible immunopeptidome profiling with detection of clinically relevant peptides from less than 4e7 cells or 15 mg wet weight tissue.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Masculino , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Peptídeos/metabolismo , Linhagem Celular
20.
Mol Cell Proteomics ; 22(4): 100506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796642

RESUMO

Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade , Antígenos HLA/genética , Antígenos HLA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA