Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H255-H260, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787385

RESUMO

Accelerations and decelerations of heart rate are nonsymmetrical in the magnitude and number of beat-to-beat changes. The asymmetric features of heart rate variability are related to respiratory durations. To explore the link between respiration and heart rate asymmetry (HRA), we evaluated 14 seated, healthy young adults who breathed with nine combinations of inspiration duration (TI) and expiration duration (TE), chosen respectively from 2, 4, and 6 s. A 5-min R-R interval (RRI) time series was obtained from each study period to construct an averaged pattern waveform relative to the respiratory cycle. We observed that the time interval between inspiration onset and RRI minimum progressively lengthened as TI and TE increased. The time interval between expiration onset and RRI maximum also lengthened when TE increased but shortened when TI increased. Consequently, TI and TE had different effects on the acceleration time (AT; from RRI maximum to RRI minimum) and deceleration time (DT; from RRI minimum to RRI maximum). The percentage of AT within the respiratory cycle showed a strong correlation with traditional Guzik's (r = 0.862, P < 0.001) and Porta's (r = 0.878, P < 0.001) indexes of HRA assessed in a Poincaré plot analysis. These findings suggest that, in addition to considering the magnitude and number of beat-to-beat changes, HRA can also be assessed based on another aspect: the duration of consecutive changes. The stepwise link between the duration of heart rate change and respiratory duration provides insight into the mechanisms connecting respiration to HRA.NEW & NOTEWORTHY In healthy adults who regulated their breathing across nine combinations of inspiration and expiration durations, we used averaged pattern waveform technique to quantify the durations of heart rate acceleration and deceleration within the respiratory cycle. The percent duration of acceleration showed a strong correlation with traditional heart rate asymmetry indexes, which evaluate the magnitude and number of beat-to-beat changes. This new approach opens a window to explore the asymmetric features of heart rate variability.


Assuntos
Frequência Cardíaca , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Aceleração , Fatores de Tempo , Expiração/fisiologia , Inalação/fisiologia , Respiração , Eletrocardiografia
2.
Small ; 20(7): e2305195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803472

RESUMO

Human gustatory system recognizes salty/sour or sweet tastants based on their different ionic or nonionic natures using two different signaling pathways. This suggests that evolution has selected this detection dualism favorably. Analogically, this work constructs herein bioinspired stimulus-responsive hydrogels to recognize model salty/sour or sweet tastes based on two different responses, that is, electrical and volumetric responsivities. Different compositions of zwitter-ionic sulfobetainic N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (DMAPS) and nonionic 2-hydroxyethyl methacrylate (HEMA) are co-polymerized to explore conditions for gelation. The hydrogel responses upon adding model tastant molecules are explored using electrical and visual de-swelling observations. Beyond challenging electrochemical impedance spectroscopy measurements, naive multimeter electrical characterizations are performed, toward facile applicability. Ionic model molecules, for example, sodium chloride and acetic acid, interact electrostatically with DMAPS groups, whereas nonionic molecules, for example, D(-)fructose, interact by hydrogen bonding with HEMA. The model tastants induce complex combinations of electrical and volumetric responses, which are then introduced as inputs for machine learning algorithms. The fidelity of such a trained dual response approach is tested for a more general taste identification. This work envisages that the facile dual electric/volumetric hydrogel responses combined with machine learning proposes a generic bioinspired avenue for future bionic designs of artificial taste recognition, amply needed in applications.

3.
BMC Cancer ; 24(1): 1238, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379827

RESUMO

OBJECTIVES: The study aims to emphasize the clinical importance of the Deep Inspiration Breath Hold (DIBH) technique by quantifying its dosimetric advantages over Free Breathing (FB) in reducing radiation exposure to the heart, liver, and lungs for right-sided breast cancer patients. This evidence supports its potential for routine clinical use to mitigate radiation-induced toxicity. METHODS: A systematic retrieval of controlled trials comparing DIBH and FB techniques in postoperative radiotherapy for right-sided breast cancer was conducted utilizing the PubMed, Embase, Cochrane Library, and Web of Science databases. The primary outcomes assessed included the doses of adjacent normal tissues (heart, liver, and lungs). Summary standardized mean differences (SMD) along with 95% confidence intervals (CI) were computed, respectively. StataMP 17 software was selected to perform data analysis. RESULTS: The study encompassed an analysis of 313 patients derived from seven online studies, comprising 168 individuals in the DIBH group and 269 individuals in the FB group. The findings indicated that the DIBH group received significantly lower irradiation doses to the heart, liver, and lungs in comparison to the FB group, with statistical significance (heart dose: SMD = -0.63, 95% CI -0.85 to -0.41, P < 0.05; liver dose: SMD = -1.15, 95% CI -1.91 to -0.38, P < 0.05; lung dose: SMD = -0.79, 95% CI -1.23 to -0.35, P < 0.05). CONCLUSION: This meta-analysis indicated that the application of DIBH during postoperative radiotherapy for right-sided breast cancer markedly decreases radiation exposure to the heart, liver, and lungs, while maintaining consistent tumor dose coverage. CLINICAL TRIAL NUMBER: Not applicable.


Assuntos
Suspensão da Respiração , Neoplasias Unilaterais da Mama , Humanos , Feminino , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias Unilaterais da Mama/cirurgia , Coração/efeitos da radiação , Pulmão/efeitos da radiação , Pulmão/cirurgia , Fígado/efeitos da radiação , Fígado/cirurgia , Radioterapia Adjuvante/métodos , Radioterapia Adjuvante/efeitos adversos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Inalação
4.
Eur J Appl Physiol ; 124(7): 2101-2110, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421428

RESUMO

PURPOSE: Low values of heart rate deceleration capacity (DC) and heart rate asymmetry (HRA) are associated with cardiovascular risks. Slow respiration has been proven to enhance the magnitudes of these indexes, but individual inspiratory (TI) and expiratory (TE) durations were not controlled in most studies. This study aims to examine whether the effects of TI and TE on these indexes would be the same and, if not, how to adjust TI and TE to maximize the effect of slow respiration. METHODS: We evaluated 14 seated healthy young adults who randomly controlled their breathing to nine combinations of TI and TE, each chosen respectively from 2, 4, and 6 s. A 5-min R-R interval time series was obtained from each study period for further analysis. RESULTS: The magnitude of DC increased when TI or TE increased, while that of acceleration capacity (AC) remained almost unchanged by TI. We further defined a new index as 100 × DC2/(DC2 + AC2) and found it to be correlated with conventional Guzik's (r = 0.94) and Porta's (r = 0.99) indexes of HRA during different combinations of TI and TE. Increasing TI and increasing TE both enhanced the magnitudes of HRA indexes, with TI taking effect when ≤ 4 s, and TE taking effect when > 4 s. DC and HRA indexes were maximized with a TI of 4 s and a TE of 6 s. CONCLUSION: We suggest that a TI of 3-4 s with a TE of 7-6 s is an appropriate standard for slow respiration.


Assuntos
Expiração , Frequência Cardíaca , Inalação , Humanos , Masculino , Frequência Cardíaca/fisiologia , Inalação/fisiologia , Feminino , Adulto , Expiração/fisiologia , Desaceleração , Adulto Jovem
5.
J Appl Clin Med Phys ; 25(8): e14414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38803045

RESUMO

PURPOSE: To evaluate the intra-fractional tumor motion in lung stereotactic body radiotherapy (SBRT) with deep inspiration breath-hold (DIBH), and to investigate the adequacy of the current planning target volume (PTV) margins. METHODS: Twenty-eight lung SBRT patients with DIBH were selected in this study. Among the lesions, twenty-three were at right or left lower lobe, two at right middle lobe, and three at right or left upper lobe. Post-treatment gated cone-beam computed tomography (CBCT) was acquired to quantify the intra-fractional tumor shift at each treatment. These obtained shifts were then used to calculate the required PTV margin, which was compared with the current applied margin of 5 mm margin in anterior-posterior (AP) and right-left (RL) directions and 8 mm in superior-inferior (SI) direction. The beam delivery time was prolonged with DIBH. The actual beam delivery time with DIBH (Tbeam_DIBH) was compared with the beam delivery time without DIBH (Tbeam_wo_DIBH) for the corresponding SBRT plan. RESULTS: A total of 113 treatments were analyzed. At six treatments (5.3%), the shifts exceeded the tolerance defined by the current PTV margin. The average shifts were 0.0 ± 1.9 mm, 0.1±1.5 mm, and -0.5 ± 3.7 mm in AP, RL, and SI directions, respectively. The required PTV margins were determined to be 4.5, 3.9, and 7.4 mm in AP, RL, and SI directions, respectively. The average Tbeam_wo_DIBH and Tbeam_DIBH were 2.4 ± 0.4 min and 3.6 ± 1.5 min, respectively. The average treatment slot for lung SBRT with DIBH was 25.3 ± 7.9 min. CONCLUSION: Intra-fractional tumor motion is the predominant source of treatment uncertainties in CBCT-guided lung SBRT with DIBH. The required PTV margin should be determined based on data specific to each institute, considering different techniques and populations. Our data indicate that our current applied PTV margin is adequate, and it is possible to reduce further in the RL direction. The time increase of Tbeam_DIBH, relative to the treatment slot, is not clinically significant.


Assuntos
Suspensão da Respiração , Tomografia Computadorizada de Feixe Cônico , Neoplasias Pulmonares , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Radioterapia de Intensidade Modulada/métodos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Movimento , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Prognóstico , Inalação
6.
J Appl Clin Med Phys ; 25(6): e14271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38273673

RESUMO

PURPOSE: The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS: The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS: The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION: With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.


Assuntos
Suspensão da Respiração , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Humanos , Feminino , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Unilaterais da Mama/radioterapia , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia Guiada por Imagem/métodos , Órgãos em Risco/efeitos da radiação , Pessoa de Meia-Idade , Neoplasias da Mama/radioterapia , Prognóstico
7.
Artigo em Inglês | MEDLINE | ID: mdl-39180643

RESUMO

Reduced vagally mediated heart rate variability (VmHRV) has been reported in patients with chronic pain. In healthy persons, breathing with longer expiration relative to inspiration increases VmHRV at 12 breaths per minute. The present study aimed to determine the immediate effect of breathing with longer expiration relative to inspiration on VmHRV and mood states in patients with chronic pain. Fifty patients with chronic pain aged between 20 and 67 years were prospectively randomized as two groups with an allocation ratio of 1:1. The interventional group practiced breathing with metronome based visual cues, maintaining an inspiration to expiration ratio of 28:72 (i/e ratio, 0.38) at a breath rate of 12 breaths per minute. The average i/e ratio they attained based on strain gauge respiration recording was 0.685 (SD 0.48). The control group, which looked at the metronome without conscious breath modification had an average i/e ratio of 0.745 (SD 0.69). The VmHRV, respiration and self-reported mood states (using the Brief Mood Introspection Scale (BMIS)) were assessed. There was a significant increase in HF-HRV and RMSSD during low i/e breathing (repeated measures ANCOVA, Bonferroni adjusted post-hoc test, p < 0.05; in all cases). Self-reported mood states changed as follows: (i) following low i/e breathing positive-mood states increased while the aroused mood state decreased whereas (ii) following the control intervention the aroused mood state increased (repeated measure ANOVA, p < 0.05; in all cases). Hence breathing with prolonged expiration is possibly useful to increase VmHRV and improve self- reported mood states in patients with chronic pain.

8.
Rep Pract Oncol Radiother ; 29(2): 176-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39143974

RESUMO

Background: Daily image-guided radiotherapy (IGRT) and deep inspiration breath hold (DIBH) technique are recommended for locoregional RT of breast cancer. The optimal workflow for a combination of surface-guided RT (SGRT) with DIBH technique is of current clinical interest. Materials and methods: The setup accuracy at three hospitals was evaluated using different SGRT workflows. A total of 150 patients (2269 image pairs) were analyzed in three groups: patient setup with the AlignRT® SGRT system in Tampere (Site 1, n = 50), the Catalyst™ SGRT system in Turku (Site 2, n = 50) and the Catalyst™ SGRT system in Jönköping (Site 3, n = 50). Each site used their routine workflow with SGRT-based setup and IGRT positioning. Residual errors of the bony chest wall, thoracic vertebra (Th 1) and humeral head were evaluated using IGRT images. Results: Systematic residual errors in the cranio-caudal (CC) direction and in pitch were generally larger at Site 2 than those at Sites 1 and 3 (p = 0.01-0.7). With daily IGRT, only a small difference (p = 0.01-0.9) was observed in residual random errors of bony structures in other directions between sites. Conclusion: The introduction of SGRT and the use of daily IGRT lead to small residual errors when combining the best workflow practices from different hospitals. Our multicenter evaluation led to improved workflow by tightening the SGRT tolerances on Site 2 and fixation modification. Because of mainly small random errors, systematic posture errors in the images need to be corrected after posture correction with new setup surfaces. We recommend tight SGRT tolerances, good fixation and correction of systematic errors.

9.
Rep Pract Oncol Radiother ; 29(1): 21-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165592

RESUMO

Background: The objective was to compare dosimetry in left-sided breast cancer (LSBC) patients receiving deep inspiration breath hold (DIBH) radiotherapy (RT) with free-breathing (FB) treatment plans. Materials and methods: Voluntary DIBH with a spirometer-based video-assisted system and CT-simulation were performed under FB and DIBH conditions on 40 LSBC patients, segmented according Duane's atlas. IMRT plans kept the same dosimetric goals on FB and DIBH conditions. Target, lungs and heart volumes were measured. Planning target volume (PTV) dose distribution, organs at risk (OARs) dose/volume parameters, including cardiac substructures, were calculated. Results: Lungs and left-lung volumes increased in DIBH conditions (ΔV = 1637.8 ml ± 555.3 and 783.5 ml ± 286.4, respectively). Heart volume slightly decreased in apnea (p = 0.04), but target volumes, CTV and PTV were similar in FB or DIBH plans. PTV dose coverage was similar irrespective of respiratory conditions (median D50% = 41.1 Gy vs 41.0 Gy, p = 0.665; V95% = 96.9% vs. 97%). Mean dose for the whole heart (MHD), left ventricle (LV), and LV segments were significantly reduced in DIBH plans. V20 values for heart subvolumes were significantly different only for those that received considerable doses (apical and anterior). DIBH plans provided significantly smaller doses (Dmax, D2%, and V20) to the LAD artery. Conclusion: Important dosimetric improvements can be achieved with DIBH technique for LSBC patients, reducing the dose to the LAD artery and heart, particularly to the segments closer to the chest wall. Apical/anterior LV segments, should be considered as separate organ at risk in breast RT.

10.
Strahlenther Onkol ; 199(4): 379-388, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36074138

RESUMO

BACKGROUND: Radiotherapy can induce cardiac injury in left-sided breast cancer cases. Cardiac-sparing irradiation using the deep inspiration breath-hold (DIBH) technique can achieve substantial dose reduction to vulnerable cardiac substructures compared with free breathing (FB). This study evaluated the dosimetric differences between both techniques at a single institution. METHODS: From 2017 to 2019, 130 patients with left-sided breast cancer underwent breast-conserving surgery (BCS; n = 121, 93.1%) or mastectomy (ME; n = 9, 6.9%) along with axillary lymph node staging (n = 105, 80.8%), followed by adjuvant irradiation in DIBH technique; adjuvant systemic therapy was included if applicable. 106 (81.5%) patients received conventional and 24 (18.5%) hypofractionated irradiation. Additionally, 12 patients received regional nodal irradiation. Computed tomography (CT) scans in FB and DIBH position were performed for all patients. Intrafractional 3D position monitoring of the patient surface in deep inspiration and breath gating was performed using Sentinel and Catalyst HD 3D surface scanning systems (C-RAD, Catalyst, C­RAD AB, Uppsala, Sweden). Individual coaching and determination of breathing amplitude during the radiation planning CT was performed. Three-dimensional treatment planning was performed using standard tangential treatment portals (6 or 18 MV). The delineation of cardiac structures and both lungs was done in both the FB and the DIBH scan. RESULTS: All dosimetric parameters for cardiac structures were significantly reduced (p < 0.01 for all). The mean heart dose (Dmean) in the DIBH group was 1.3 Gy (range 0.5-3.6) vs. 2.2 Gy (range 0.9-8.8) in the FB group (p < 0.001). The Dmean for the left ventricle (LV) in DIBH was 1.5 Gy (range 0.6-4.5), as compared to 2.8 Gy (1.1-9.5) with FB (p < 0.001). The parameters for LV (V10 Gy, V15 Gy, V20 Gy, V23 Gy, V25 Gy, V30 Gy) were reduced by about 100% (p < 0.001). The LAD Dmean in the DIBH group was 4.1 Gy (range 1.2-33.3) and 14.3 Gy (range 2.4-37.5) in the FB group (p < 0.001). The median values for LAD such as V15 Gy, V20 Gy, V25 Gy, V30 Gy, and V40 Gy decreased by roughly 100% (p < 0.001). An increasing volume of left lung in the DIBH position resulted in dose sparing of cardiac structures. CONCLUSION: For all ascertained dosimetric parameters, a significant dose reduction could be achieved in DIBH technique.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Órgãos em Risco/efeitos da radiação , Neoplasias da Mama/radioterapia , Dosagem Radioterapêutica , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias Unilaterais da Mama/cirurgia , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Suspensão da Respiração , Mastectomia , Coração/diagnóstico por imagem , Coração/efeitos da radiação
11.
Strahlenther Onkol ; 199(1): 90-101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943553

RESUMO

PURPOSE: The purpose of this study was to compare two techniques of irradiation of left-sided breast cancer patients who underwent breast-conserving surgery, three-dimensional conformal radiotherapy technique (3D-CRT) and volumetric modulated arc therapy (VMAT), in terms of dose distribution in the planning target volume (PTV) and organs at risk (OARs). The second aim of the study was estimation of the projected risk of radiation-induced secondary cancer for both radiotherapy techniques. MATERIALS AND METHODS: For 25 patients who underwent CT simulation in deep inspiration breath-hold (DIBH), three treatment plans were generated: one using a three-dimensional conformal radiotherapy technique and two using volumetric modulated arc therapy. First VMAT-DIBH geometry consisted of three partial arcs (ARC-DIBH 3A) and second consisted of four partial arcs (ARC-DIBH 4A). Cumulative dose-volume histograms (DVHs) were used to compare dose distributions within the PTV and OARs (heart, left anterior descending coronary artery [LAD], ipsilateral and contralateral lung [IL, CL], and contralateral breast [CB]). Normal tissue complication probabilities (NTCPs) and organ equivalent doses (OEDs) were calculated using the differential DVHs. Excess absolute risks (EARs) for second cancers were estimated using Schneider's full mechanistic dose-response model. RESULTS: All plans fulfilled the criterium for PTV V95% ≥ 95%. The PTV coverage, homogeneity, and conformity indices were significantly better for VMAT-DIBH. VMAT showed a significantly increased mean dose and V5Gy for all OARs, but reduced LAD Dmax by 15 Gy. For IL, CL, and CB, the 3D-CRT DIBH method achieved the lowest values of EAR: 28.38 per 10,000 PYs, 2.55 per 10,000 PYs, and 4.48 per 10,000 PYs (p < 0.001), compared to 40.29 per 10,000 PYs, 15.62 per 10,000 PYs, and 23.44 per 10,000 PYs for ARC-DIBH 3A plans and 41.12 per 10,000 PYs, 15.59 per 10,000 PYs, and 22.73 per 10,000 PYs for ARC-DIBH 4A plans. Both techniques provided negligibly low NTCPs for all OARs. CONCLUSION: The study shows that VMAT-DIBH provides better OAR sparing against high doses. However, the large low-dose-bath (≤ 5 Gy) is still a concern due to the fact that a larger volume of normal tissues exposed to lower doses may increase a radiation-induced risk of secondary cancer.


Assuntos
Neoplasias da Mama , Neoplasias Induzidas por Radiação , Segunda Neoplasia Primária , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Humanos , Feminino , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Órgãos em Risco/efeitos da radiação
12.
Strahlenther Onkol ; 199(1): 55-66, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229656

RESUMO

PURPOSE: To compare two left breast cancer patient cohorts (tangential vs. locoregional deep-inspiration breath-hold - DIBH treatment) with different predefined beam gating thresholds and to evaluate their impact on motion management and DIBH stability. METHODS: An SGRT-based clinical workflow was adopted for the DIBH treatment. Intrafractional monitoring was performed by tracking both the respiratory signal and the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift"). Beam gating tolerances were 5 mm/4 mm for the SGRT shifts and 5 mm/3 mm for the gating window amplitude for breast tangential and breast + lymph nodes locoregional treatments, respectively. A total of 24 patients, 12 treated with a tangential technique and 12 with a locoregional technique, were evaluated for a total number of 684 fractions. Statistical distributions of SGRT shift and respiratory signal for each treatment fraction, for each patient treatment, and for the two population samples were generated. RESULTS: Lateral cumulative distributions of SGRT shifts for both locoregional and tangential samples were consistent with a null shift, whereas longitudinal and vertical ones were slightly negative (mean values < 1 mm). The distribution of the percentage of beam on time with SGRT shift > 3 mm, > 4 mm, or > 5 mm was extended toward higher values for the tangential sample than for the locoregional sample. The variability in the DIBH respiration signal was significantly greater for the tangential sample. CONCLUSION: Different beam gating thresholds for surface-guided DIBH treatment of left breast cancer can impact motion management and DIBH stability by reducing the frequency of the maximum SGRT shift and increasing respiration signal stability when tighter thresholds are adopted.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/radioterapia , Suspensão da Respiração , Respiração , Movimento (Física) , Mama , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
13.
Acta Oncol ; 62(8): 932-941, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37516978

RESUMO

PURPOSE: The purpose of this study was to evaluate three techniques of irradiation of left-sided breast cancer patients, three-dimensional conformal radiotherapy (3D-CRT), hybrid Intensity-Modulated Radiotherapy (h-IMRT), and hybrid Volumetric-Modulated Arc Therapy (h-VMAT, h-ARC), in terms of dose distribution in the planning target volume (PTV) and organs at risk (OARs). The second aim was to estimate the projected relative risk of radiation-induced secondary cancers for hybrid techniques. MATERIALS AND METHODS: Three treatment plans were prepared in 3D-CRT, h-IMRT, and h-VMAT techniques for each of the 40 patients, who underwent CT simulation in deep inspiration breath-hold (DIBH). For hybrid techniques, plans were created by combining 3D-CRT and dynamic fields with an 80%/20% dose ratio for 3D-CRT and IMRT or VMAT. Cumulative dose-volume histograms were used to compare dose distributions within the PTV and OARs (heart, left anterior descending coronary artery [LAD], left and right lung [LL, RL], right breast [RB]). Projected risk ratios for secondary cancers were estimated relative to 3D-CRT using the organ equivalent dose (OED) concept for the Schneider's linear exponential, plateau, and full mechanistic dose-response model. RESULTS: All plans fulfilled the PTV criterium: V95%≥95%. Compared to 3D-CRT, both hybrid techniques showed significantly better target coverage (PTV: V95%>98%, p < 0.001), and the best conformality was achieved by h-ARC plans (CI: 1.18 ± 0.09, p < 0.001). Compared to 3D-CRT and h-ARC, h-IMRT increased the average sum of monitor units (MU) over 129.9% (p < 0.001). H-ARC increased the mean dose of contralateral organs and the LL V5Gy parameter (p < 0.001). Both hybrid techniques significantly reduced the Dmax of the heart by 5 Gy. Compared to h-IMRT, h-ARC increased secondary cancer projected relative risk ratios for LL, RL, and RB by 18, 152, and 81%, respectively. CONCLUSIONS: The results confirmed that both hybrid techniques provide better target quality and OARs sparing than 3D-CRT. Hybrid VMAT delivers less MU compared to hybrid IMRT but may increase the risk of radiation-induced secondary malignancies.


Assuntos
Neoplasias da Mama , Neoplasias Induzidas por Radiação , Segunda Neoplasia Primária , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Humanos , Feminino , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias Unilaterais da Mama/radioterapia , Risco , Neoplasias da Mama/radioterapia , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Segunda Neoplasia Primária/etiologia , Órgãos em Risco/efeitos da radiação
14.
Neurourol Urodyn ; 42(6): 1261-1279, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37260116

RESUMO

INTRODUCTION: Some authors suggest that breathing exercises should be recommended instead of or in combination with pelvic floor muscle training (PFMT) to prevent and treat urinary incontinence (UI) and pelvic organ prolapse (POP). AIMS: The primary aim of the present study was to investigate the evidence for breathing as an intervention alone or in addition to PFM contraction in treatment of UI and POP. MATERIALS & METHODS: This systematic review included short-term experimental studies and randomize controlled trials (RCTs) indexed on PubMed, EMBASE, and PEDro database. A form was used to extract data that was analyzed qualitatively due to the heterogeneity in interventions and outcome measures of the included studies. The individual methodological quality of RCTs was analyzed using the PEDro scale. RESULTS: A total of 18 studies were included, 374 participants from short-term experimental studies and 765 from nine RCTs. PEDro score varied from 4 to 8. Activation of the PFM during expiration was significantly less than during a PFM contraction. In general, the RCTs showed that training the PFM is significantly more effective to improve PFM variables and UI and POP than breathing exercises, and that adding breathing exercises to PFMT have no additional effect. CONCLUSION: This systematic review indicates that the evidence for incorporating breathing exercise in clinical practice in addition to or instead of PFMT is scant or non-existing, both based on short-term experimental studies and small RCTs.


Assuntos
Prolapso de Órgão Pélvico , Incontinência Urinária , Humanos , Diafragma da Pelve/fisiologia , Terapia por Exercício , Incontinência Urinária/prevenção & controle , Exercícios Respiratórios , Prolapso de Órgão Pélvico/terapia , Resultado do Tratamento
15.
Future Oncol ; 19(2): 137-145, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36919855

RESUMO

Background: Deep inspiration breath-hold (DIBH) has been established to decrease normal tissue radiation dose in breast cancer. Methods: Forty-nine patients had two CT scans during DIBH or free breathing. Chest-wall position, setup verification and breath-hold monitoring were performed. Cone-beam CT and a surface image system were used for verification. Results: A total of 1617 breath-holds were analyzed in 401 fractions. The mean time bit was 6.01 min. The mean breaths-holds per fraction was 4.96. The median for intra-breath hold variability was 3 mm. No patient stopped treatment for intolerance. Clinical target volume margins were calculated as 0.36, 0.36 and 0.32 for the three translational positions. The mean saved volume was 26.3%. Conclusion: Voluntary DIBH is feasible, tolerable and easy to apply for children with Hodgkin lymphoma involving the mediastinum.


Deep inspiration breath-hold (DIBH) is a radiotherapy maneuver to decrease the exposure of normal tissues during the radiation of the target organ. It was developed for the treatment of breast cancer, both intact breast and chest wall, after mastectomy. For mediastinal Hodgkin lymphoma, especially in children and adolescents, DIBH will benefit in decreasing the radiation dose to the lungs and heart in this category of patients who still have normal growing tissues. We treated 49 pediatric and adolescent patients with DIBH and precise radiotherapy (volumetric modulated arc therapy) to augment the benefit of lowering the dose to normal tissues. All patients were trained and coached to breath-hold for more than 20 s. No patient stopped treatment due to poor tolerance or discomfort. Only one breath-hold was required for CT simulation in all populations (100%). The mean number of breath-holds per treatment fraction was 5.1 ± 1.8. The mean treatment time was 6 ± 1.8 min. DIBH is feasible, tolerable and easy to apply for children and adolescents with Hodgkin lymphoma involving the mediastinum. A considerable dose volume could be saved, hence decreasing the rate of side effects.


Assuntos
Suspensão da Respiração , Doença de Hodgkin , Inalação , Neoplasias do Mediastino , Radioterapia de Intensidade Modulada , Doença de Hodgkin/diagnóstico por imagem , Doença de Hodgkin/radioterapia , Neoplasias do Mediastino/diagnóstico por imagem , Neoplasias do Mediastino/radioterapia , Tomografia Computadorizada de Feixe Cônico , Humanos , Masculino , Feminino , Criança , Adolescente
16.
Respirology ; 28(3): 226-235, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36210352

RESUMO

BACKGROUND AND OBJECTIVE: The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS: Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS: In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION: Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.


Assuntos
Asma , Humanos , Cloreto de Metacolina/farmacologia , Asma/diagnóstico , Sistema Respiratório , Testes de Provocação Brônquica , Medidas de Volume Pulmonar , Resistência das Vias Respiratórias/fisiologia , Volume Expiratório Forçado
17.
J Appl Clin Med Phys ; 24(4): e13888, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36617188

RESUMO

Deep-inspiration breath-hold (DIBH) reduces the radiation dose to the heart and lungs during breast radiotherapy in cancer. However, there is not enough discussion about suitable breathing methods for DIBH. Therefore, we investigated the radiation doses and organ and body surface displacement in abdominal DIBH (A-DIBH) and thoracic DIBH (T-DIBH). Free-breathing, A-DIBH, and T-DIBH computed tomography images of 100 patients were used. After contouring the targets, heart, and lungs, radiotherapy plans were created. We investigated the heart and lung doses, the associations between the heart and left lung displacements, and the thorax and abdominal surface displacements. No significant differences were observed in the target dose indices. However, the heart and lung doses were significantly lower in A-DIBH than in T-DIBH for all the indices; the mean heart and lung doses were 1.69 and 3.48 Gy, and 1.91 and 3.55 Gy in A-DIBH and T-DIBH, respectively. The inferior displacement of the heart and the left lung was more significant in A-DIBH. Therefore, inferior expansion of the heart and lungs may be responsible for the respective dose reductions. The abdominal surface displaced more than the thoracic surface in both A-DIBH and T-DIBH, and thoracic surface displacement was greater in T-DIBH than in A-DIBH. Moreover, A-DIBH can be identified because abdominal surface displacement was greater in A-DIBH than in T-DIBH. In conclusion, A-DIBH and T-DIBH could be distinguished by comparing the abdominal and thoracic surfaces of A-DIBH and T-DIBH, thereby ensuring the implementation of A-DIBH and reducing the heart and lung doses.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Mama , Coração/diagnóstico por imagem , Pulmão , Suspensão da Respiração , Neoplasias Unilaterais da Mama/radioterapia , Órgãos em Risco , Neoplasias da Mama/radioterapia
18.
J Appl Clin Med Phys ; 24(1): e13755, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35993318

RESUMO

This study compared the reproducibility of chestwall and heart position using surface-guided versus RPM (real-time position management)-guided deep inspiration breath hold (DIBH) radiotherapy for left sided breast cancer. Forty DIBH patients under either surface-guided radiotherapy (SGRT) or RPM guidance were studied. For patients treated with tangential fields, reproducibility was measured as the displacements in central lung distance (CLD) and heart shadow to field edge distance (HFD) between pretreatment MV (megavoltage) images and planning DRRs (digitally reconstructed radiographs). For patients treated with volumetric modulated arc therapy (VMAT), sternum to isocenter (ISO) distance (StID), spine to rib edge distance (SpRD), and heart shadow to central axis (CAX) distance (HCD) between pretreatment kV images and planning DRRs were measured. These displacements were compared between SGRT and RPM-guided DIBH. In tangential patients, the mean absolute displacements of SGRT versus RPM guidance were 0.19 versus 0.23 cm in CLD, and 0.33 versus 0.62 cm in HFD. With respect to planning DRR, heart appeared closer to the field edge by 0.04 cm with surface imaging versus 0.62 cm with RPM. In VMAT patients, the displacements of surface imaging versus RPM guidance were 0.21 versus 0.15 cm in StID, 0.24 versus 0.19 cm in SpRD, and 0.72 versus 0.41 cm in HCD. Heart appeared 0.41 cm further away from CAX with surface imaging, whereas 0.10 cm closer to field CAX with RPM. None of the differences between surface imaging and RPM guidance was statistically significant. In conclusion, the displacements of chestwall were small and were comparable with SGRT- or RPM-guided DIBH. The position deviations of heart were larger than those of chestwall with SGRT or RPM. Although none of the differences between SGRT and RPM guidance were statistically significant, there was a trend that the position deviations of heart were smaller and more favorable with SGRT than with RPM guidance in tangential patients.


Assuntos
Neoplasias da Mama , Parede Torácica , Neoplasias Unilaterais da Mama , Humanos , Feminino , Neoplasias da Mama/radioterapia , Reprodutibilidade dos Testes , Suspensão da Respiração , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Unilaterais da Mama/radioterapia , Coração/diagnóstico por imagem
19.
J Appl Clin Med Phys ; 24(11): e14116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37538022

RESUMO

Personalized precision irradiation of patients with left-sided breast cancer is possible by examining the setup errors of 3- and 4-mm gated window widths for those treated with deep inspiration breath-hold (DIBH) treatment. An observational study was performed via a retrospective analysis of 250 cone-beam computed tomography (CBCT) images of 60 left-breast cancer patients who underwent whole-breast radiotherapy with the DIBH technique between January 2021 and 2022 at our hospital. Among them, 30 patients had a gated window width of 3 mm, while the remaining 30 had a gated window width of 4 mm; both groups received radiotherapy using DIBH technology. All patients underwent CBCT scans once a week, and the setup errors in the left-right (x-axis), inferior-superior (y-axis), and anterior-posterior (z-axis) directions were recorded. The clinical-to-planning target volume (CTV-PTV) margins of the two gating windows were calculated using established methods. The setup error in the Y direction was 1.69 ± 1.33 mm for the 3-mm - wide gated window and 2.42 ± 3.02 mm for the 4-mm - wide gated window. The two groups had statistically significant differences in the overall mean setup error (Dif 0.7, 95% CI 0.15-1.31, t = 2.48, p= 0.014). The Z-direction setup error was 2.32 ± 2.12 mm for the 3-mm - wide gated window and 3.15 ± 3.34 mm for the 4-mm - wide gated window. The overall mean setup error was statistically significant between the two groups (Dif 0.8, 95% CI 0.13-1.53, t= 2.34, p = 0.020). There was no significant difference in the X-direction setup error (p > 0.05). Therefore, the CTV-PTV margin values for a 3-mm gated window width in the X, Y, and Z directions are 5.51, 5.15, and 7.28 mm, respectively; those for a 4-mm gated window width in the X, Y, and Z directions are 5.52, 8.16, and 10.21 mm, respectively. The setup errors of the 3-mm - wide gating window are smaller than those of the 4-mm - wide gating window in the three dimensions. Therefore, when the patient's respiratory gating window width is reduced, the margin values of CTV-PTV can be reduced to increase the distance between the PTV and the organs at risk (OARs), which ensures adequate space for the dose to decrease, resulting in lower dose exposure to the OARs (heart, lungs, etc.), thus sparing the OARs from further damage. However, some patients with poor pulmonary function or unstable breathing amplitudes must be treated with a slightly larger gating window. Therefore, this study lays a theoretical basis for personalized precision radiotherapy, which can save time and reduce manpower in the delivery of clinical treatment to a certain extent. Another potential benefit of this work is to bring awareness to the potential implications of a slightly larger gating window during treatment without considering the resulting dosimetric impact.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Suspensão da Respiração , Estudos Retrospectivos , Neoplasias da Mama/radioterapia , Tomografia Computadorizada por Raios X/métodos , Respiração , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias Unilaterais da Mama/radioterapia
20.
Rep Pract Oncol Radiother ; 28(5): 582-591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179291

RESUMO

Background: The objective was to explore the clinical use of an "in-house" prototype developed to monitor respiratory motion to implement the deep inspiration breath hold technique (DIBH), compare dosimetric differences, and assess whether simple anatomic metrics measured on free breathing (FB) computed tomography scan (CT) can help in selecting patients that would benefit the most from the technique. Materials and methods: A prospective study was conducted on patients with left breast cancer with an indication of adjuvant radiotherapy for breast only. Treatment simulation consisted of four series of CTs: the first during FB and three in DIBH to assess the reproducibility and stability of apnea. Contouring was based on the RTOG atlas, and planning was done in both FB and DIBH. Dosimetric and geometric parameters were assessed and compared between FB and DIBH. Results: From June 2020 to December 2021, 30 patients with left breast cancer were recruited. Overall, the DIBH technique presented a mean dose reduction of 24% in the heart and 30% in the left anterior descendent coronary artery (LAD) (p < 0.05). The only geometric parameter correlated to a 30% dose reduction in the mean heart dose and LAD doses was the anterolateral distance from the heart to the chest wall of at least 1.5 cm measured on FB (p < 0.0001). Conclusion: The prototype enabled the use of the DIBH technique with dose reductions in the heart and LAD. The benefit of the DIBH technique can be predicted on FB CT by measuring the distance between the heart and chest wall at the treatment isocenter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA