Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2109313118, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251987

RESUMO

Investments in data management infrastructure often seek to catalyze new research outcomes based on the reuse of research data. To achieve the goals of these investments, we need to better understand how data creation and data quality concerns shape the potential reuse of data. The primary audience for this paper centers on scientific domain specialists that create and (re)use datasets documenting archaeological materials. This paper discusses practices that promote data quality in support of more open-ended reuse of data beyond the immediate needs of the creators. We argue that identifier practices play a key, but poorly recognized, role in promoting data quality and reusability. We use specific archaeological examples to demonstrate how the use of globally unique and persistent identifiers can communicate aspects of context, avoid errors and misinterpretations, and facilitate integration and reuse. We then discuss the responsibility of data creators and data reusers to employ identifiers to better maintain the contextual integrity of data, including professional, social, and ethical dimensions.


Assuntos
Arqueologia , Confiabilidade dos Dados
2.
Diabetologia ; 67(2): 236-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041737

RESUMO

People living with diabetes have many medical devices available to assist with disease management. A critical aspect that must be considered is how systems for continuous glucose monitoring and insulin pumps communicate with each other and how the data generated by these devices can be downloaded, integrated, presented and used. Not only is interoperability associated with practical challenges, but also devices must adhere to all aspects of regulatory and legal frameworks. Key issues around interoperability in terms of data ownership, privacy and the limitations of interoperability include where the responsibility/liability for device and data interoperability lies and the need for standard data-sharing protocols to allow the seamless integration of data from different sources. There is a need for standardised protocols for the open and transparent handling of data and secure integration of data into electronic health records. Here, we discuss the current status of interoperability in medical devices and data used in diabetes therapy, as well as regulatory and legal issues surrounding both device and data interoperability, focusing on Europe (including the UK) and the USA. We also discuss a potential future landscape in which a clear and transparent framework for interoperability and data handling also fulfils the needs of people living with diabetes and healthcare professionals.


Assuntos
Automonitorização da Glicemia , Diabetes Mellitus , Humanos , Glicemia , Diabetes Mellitus/tratamento farmacológico , Registros Eletrônicos de Saúde , Reino Unido
3.
Crit Rev Clin Lab Sci ; 61(2): 127-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800865

RESUMO

Direct access testing (DAT) is an emerging care model that provides on-demand laboratory services for certain preventative, diagnostic, and monitoring indications. Unlike conventional testing models where health care providers order tests and where sample collection is performed onsite at the clinic or laboratory, most interactions between DAT consumers and the laboratory are virtual. Tests are ordered and results delivered online, and specimens are frequently self-collected at home with virtual support. Thus, DAT depends on high-quality information technology (IT) tools and optimized data utilization to a greater degree than conventional laboratory testing. This review critically discusses the United States DAT landscape in relation to IT to highlight digital challenges and opportunities for consumers, health care systems, providers, and laboratories. DAT offers consumers increased autonomy over the testing experience, cost, and data sharing, but the current capacity to integrate DAT as a care option into the conventional patient-provider model is lacking and will require innovative approaches to accommodate. Likewise, both consumers and health care providers need transparent information about the quality of DAT laboratories and clinical decision support to optimize appropriate use of DAT as a part of comprehensive care. Interoperability barriers will require intentional approaches to integrating DAT-derived data into the electronic health records of health systems nationally. This includes ensuring the laboratory results are appropriately captured for downstream data analytic pipelines that are used to satisfy population health and research needs. Despite the data- and IT-related challenges for widespread incorporation of DAT into routine health care, DAT has the potential to improve health equity by providing versatile, discreet, and affordable testing options for patients who have been marginalized by the current limitations of health care delivery in the United States.


Assuntos
Atenção à Saúde , Tecnologia da Informação , Humanos , Estados Unidos
4.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37876299

RESUMO

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem de Perfusão/métodos , Marcadores de Spin , Circulação Cerebrovascular/fisiologia , Angiografia por Ressonância Magnética/métodos , Perfusão
5.
Metabolomics ; 20(1): 15, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267595

RESUMO

INTRODUCTION: Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. OBJECTIVES: In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. METHODS & RESULTS: In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. CONCLUSION: Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks.


Assuntos
Lipidômica , Metabolômica , Lipídeos
6.
Oncology ; 102(4): 327-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37729894

RESUMO

INTRODUCTION: Documentation as well as IT-based management of medical data is of ever-increasing relevance in modern medicine. As radiation oncology is a rather technical, data-driven discipline, standardization, and data exchange are in principle possible. We examined electronic healthcare documents to extract structured information. Planning CT order entry documents were chosen for the analysis, as this covers a common and structured step in radiation oncology, for which standardized documentation may be achieved. The aim was to examine the extent to which relevant information may be exchanged among different institutions. MATERIALS AND METHODS: We contacted representatives of nine radiation oncology departments. Departments using standardized electronic documentation for planning CT were asked to provide templates of their records, which were analyzed in terms of form and content. Structured information was extracted by identifying definite common data elements, containing explicit information. Relevant common data elements were identified and classified. A quantitative analysis was performed to evaluate the possibility of data exchange. RESULTS: We received data of seven documents that were heterogeneous regarding form and content. 181 definite common data elements considered relevant for the planning CT were identified and assorted into five semantic groups. 139 data elements (76.8%) were present in only one document. The other 42 data elements were present in two to six documents, while none was shared among all seven documents. CONCLUSION: Structured and interoperable documentation of medical information can be achieved using common data elements. Our analysis showed that a lot of information recorded with healthcare documents can be presented with this approach. Yet, in the analyzed cohort of planning CT order entries, only a few common data elements were shared among the majority of documents. A common vocabulary and consensus upon relevant information is required to promote interoperability and standardization.


Assuntos
Elementos de Dados Comuns , Médicos , Humanos , Atenção à Saúde , Documentação , Tomografia Computadorizada por Raios X
7.
Clin Chem Lab Med ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379410

RESUMO

Advances in technology have transformed healthcare and laboratory medicine. Biosensors have emerged as a promising technology in healthcare, providing a way to monitor human physiological parameters in a continuous, real-time, and non-intrusive manner and offering value and benefits in a wide range of applications. This position statement aims to present the current situation around biosensors, their perspectives and importantly the need to set the framework for their validation and safe use. The development of a qualification framework for biosensors should be conceptually adopted and extended to cover digitally measured biomarkers from biosensors for advancing healthcare and achieving more individualized patient management and better patient outcome.

8.
J Biomed Inform ; 151: 104614, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395099

RESUMO

OBJECTIVES: The objective of this study is to describe how OCRx (Canadian Drug Ontology) has been built to address the dual need for local drug information integration in Canada and alignment with international standards requirements. METHODS: This paper delves into (i) the implementation efforts to meet the Identification of Medicinal Product (IDMP) requirements in OCRx, alongside the ontology update strategy, (ii) the structure of the ontology itself, (iii) the alignment approach with several reference Knowledge Organization Systems, including SNOMED CT, RxNorm, and the list of "Code Identifiant de Spécialité" (CIS-Code), and (iv) the look-up services developed to facilitate its access and utilization. RESULTS: Each OCRx release contains two distinct versions: the full and the up-to-date version. The full version encompasses all drugs with a DIN code sanctioned by Health Canada, while the up-to-date version is limited to drugs currently marketed in Canada. In the last release of OCRx, the full version comprises 162,400 classes; meanwhile, the up-to-date version consists of 36,909 classes. In terms of mappings with OCRx, substances in RxNorm and SNOMED CT fall below 40%, registering at 37% and 22% respectively. Meanwhile, mappings for CIS-Code achieve coverage of 61%. The strength mappings are notably low for RxNorm at 40% and for CIS-code at 28%. This affects the mapping of clinical drugs, which are predominantly alignable through post-coordinated expressions: 56% for RxNorm, 80% for SNOMED CT, and 35% for CIS-Code. The main support service of OCRx is a look-up service known as PaperRx that displays OCRx's entities based on description logic queries (DL-queries) performed through the classified structure of OCRx. The look-up services also contain a SPARQL endpoint, an OCRx OWL file downloader, and a RESTful API. DISCUSSION: The OCRx ontology demonstrates a significant effort towards integrating Canadian drug information with international standards. However, there are areas for improvement. In the future, our focus will be on refining the structure of OCRx for better classification capability and improvement of dosage conversion. Additionally, we aim to harness OCRx in constructing an ontology-based annotator, setting our sights on its deployment in real-world data integration scenarios.


Assuntos
Systematized Nomenclature of Medicine , Vocabulário Controlado , Canadá , Padrões de Referência , Internacionalidade
9.
J Biomed Inform ; 155: 104659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777085

RESUMO

OBJECTIVE: This study aims to promote interoperability in precision medicine and translational research by aligning the Observational Medical Outcomes Partnership (OMOP) and Phenopackets data models. Phenopackets is an expert knowledge-driven schema designed to facilitate the storage and exchange of multimodal patient data, and support downstream analysis. The first goal of this paper is to explore model alignment by characterizing the common data models using a newly developed data transformation process and evaluation method. Second, using OMOP normalized clinical data, we evaluate the mapping of real-world patient data to Phenopackets. We evaluate the suitability of Phenopackets as a patient data representation for real-world clinical cases. METHODS: We identified mappings between OMOP and Phenopackets and applied them to a real patient dataset to assess the transformation's success. We analyzed gaps between the models and identified key considerations for transforming data between them. Further, to improve ambiguous alignment, we incorporated Unified Medical Language System (UMLS) semantic type-based filtering to direct individual concepts to their most appropriate domain and conducted a domain-expert evaluation of the mapping's clinical utility. RESULTS: The OMOP to Phenopacket transformation pipeline was executed for 1,000 Alzheimer's disease patients and successfully mapped all required entities. However, due to missing values in OMOP for required Phenopacket attributes, 10.2 % of records were lost. The use of UMLS-semantic type filtering for ambiguous alignment of individual concepts resulted in 96 % agreement with clinical thinking, increased from 68 % when mapping exclusively by domain correspondence. CONCLUSION: This study presents a pipeline to transform data from OMOP to Phenopackets. We identified considerations for the transformation to ensure data quality, handling restrictions for successful Phenopacket validation and discrepant data formats. We identified unmappable Phenopacket attributes that focus on specialty use cases, such as genomics or oncology, which OMOP does not currently support. We introduce UMLS semantic type filtering to resolve ambiguous alignment to Phenopacket entities to be most appropriate for real-world interpretation. We provide a systematic approach to align OMOP and Phenopackets schemas. Our work facilitates future use of Phenopackets in clinical applications by addressing key barriers to interoperability when deriving a Phenopacket from real-world patient data.


Assuntos
Unified Medical Language System , Humanos , Semântica , Registros Eletrônicos de Saúde , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica , Informática Médica/métodos , Processamento de Linguagem Natural , Doença de Alzheimer
10.
J Med Internet Res ; 26: e54265, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916936

RESUMO

BACKGROUND: Evidence-based medicine (EBM) has the potential to improve health outcomes, but EBM has not been widely integrated into the systems used for research or clinical decision-making. There has not been a scalable and reusable computer-readable standard for distributing research results and synthesized evidence among creators, implementers, and the ultimate users of that evidence. Evidence that is more rapidly updated, synthesized, disseminated, and implemented would improve both the delivery of EBM and evidence-based health care policy. OBJECTIVE: This study aimed to introduce the EBM on Fast Healthcare Interoperability Resources (FHIR) project (EBMonFHIR), which is extending the methods and infrastructure of Health Level Seven (HL7) FHIR to provide an interoperability standard for the electronic exchange of health-related scientific knowledge. METHODS: As an ongoing process, the project creates and refines FHIR resources to represent evidence from clinical studies and syntheses of those studies and develops tools to assist with the creation and visualization of FHIR resources. RESULTS: The EBMonFHIR project created FHIR resources (ie, ArtifactAssessment, Citation, Evidence, EvidenceReport, and EvidenceVariable) for representing evidence. The COVID-19 Knowledge Accelerator (COKA) project, now Health Evidence Knowledge Accelerator (HEvKA), took this work further and created FHIR resources that express EvidenceReport, Citation, and ArtifactAssessment concepts. The group is (1) continually refining FHIR resources to support the representation of EBM; (2) developing controlled terminology related to EBM (ie, study design, statistic type, statistical model, and risk of bias); and (3) developing tools to facilitate the visualization and data entry of EBM information into FHIR resources, including human-readable interfaces and JSON viewers. CONCLUSIONS: EBMonFHIR resources in conjunction with other FHIR resources can support relaying EBM components in a manner that is interoperable and consumable by downstream tools and health information technology systems to support the users of evidence.


Assuntos
Medicina Baseada em Evidências , Interoperabilidade da Informação em Saúde , Medicina Baseada em Evidências/normas , Humanos , Interoperabilidade da Informação em Saúde/normas , COVID-19 , Nível Sete de Saúde
11.
J Med Internet Res ; 26: e56614, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819879

RESUMO

BACKGROUND: Efficient data exchange and health care interoperability are impeded by medical records often being in nonstandardized or unstructured natural language format. Advanced language models, such as large language models (LLMs), may help overcome current challenges in information exchange. OBJECTIVE: This study aims to evaluate the capability of LLMs in transforming and transferring health care data to support interoperability. METHODS: Using data from the Medical Information Mart for Intensive Care III and UK Biobank, the study conducted 3 experiments. Experiment 1 assessed the accuracy of transforming structured laboratory results into unstructured format. Experiment 2 explored the conversion of diagnostic codes between the coding frameworks of the ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification), and Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) using a traditional mapping table and a text-based approach facilitated by the LLM ChatGPT. Experiment 3 focused on extracting targeted information from unstructured records that included comprehensive clinical information (discharge notes). RESULTS: The text-based approach showed a high conversion accuracy in transforming laboratory results (experiment 1) and an enhanced consistency in diagnostic code conversion, particularly for frequently used diagnostic names, compared with the traditional mapping approach (experiment 2). In experiment 3, the LLM showed a positive predictive value of 87.2% in extracting generic drug names. CONCLUSIONS: This study highlighted the potential role of LLMs in significantly improving health care data interoperability, demonstrated by their high accuracy and efficiency in data transformation and exchange. The LLMs hold vast potential for enhancing medical data exchange without complex standardization for medical terms and data structure.


Assuntos
Troca de Informação em Saúde , Humanos , Troca de Informação em Saúde/normas , Interoperabilidade da Informação em Saúde , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Systematized Nomenclature of Medicine
12.
J Med Internet Res ; 26: e55779, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593431

RESUMO

Practitioners of digital health are familiar with disjointed data environments that often inhibit effective communication among different elements of the ecosystem. This fragmentation leads in turn to issues such as inconsistencies in services versus payments, wastage, and notably, care delivered being less than best-practice. Despite the long-standing recognition of interoperable data as a potential solution, efforts in achieving interoperability have been disjointed and inconsistent, resulting in numerous incompatible standards, despite the widespread agreement that fewer standards would enhance interoperability. This paper introduces a framework for understanding health care data needs, discussing the challenges and opportunities of open data standards in the field. It emphasizes the necessity of acknowledging diverse data standards, each catering to specific viewpoints and needs, while proposing a categorization of health care data into three domains, each with its distinct characteristics and challenges, along with outlining overarching design requirements applicable to all domains and specific requirements unique to each domain.


Assuntos
Atenção à Saúde , Humanos
13.
J Med Internet Res ; 26: e45209, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289660

RESUMO

BACKGROUND: The increasing use of electronic health records and the Internet of Things has led to interoperability issues at different levels (structural and semantic). Standards are important not only for successfully exchanging data but also for appropriately interpreting them (semantic interoperability). Thus, to facilitate the semantic interoperability of data exchanged in health care, considerable resources have been deployed to improve the quality of shared clinical data by structuring and mapping them to the Fast Healthcare Interoperability Resources (FHIR) standard. OBJECTIVE: The aims of this study are 2-fold: to inventory the studies on FHIR semantic interoperability resources and terminologies and to identify and classify the approaches and contributions proposed in these studies. METHODS: A systematic mapping review (SMR) was conducted using 10 electronic databases as sources of information for inventory and review studies published during 2012 to 2022 on the development and improvement of semantic interoperability using the FHIR standard. RESULTS: A total of 70 FHIR studies were selected and analyzed to identify FHIR resource types and terminologies from a semantic perspective. The proposed semantic approaches were classified into 6 categories, namely mapping (31/126, 24.6%), terminology services (18/126, 14.3%), resource description framework or web ontology language-based proposals (24/126, 19%), annotation proposals (18/126, 14.3%), machine learning (ML) and natural language processing (NLP) proposals (20/126, 15.9%), and ontology-based proposals (15/126, 11.9%). From 2012 to 2022, there has been continued research in 6 categories of approaches as well as in new and emerging annotations and ML and NLP proposals. This SMR also classifies the contributions of the selected studies into 5 categories: framework or architecture proposals, model proposals, technique proposals, comparison services, and tool proposals. The most frequent type of contribution is the proposal of a framework or architecture to enable semantic interoperability. CONCLUSIONS: This SMR provides a classification of the different solutions proposed to address semantic interoperability using FHIR at different levels: collecting, extracting and annotating data, modeling electronic health record data from legacy systems, and applying transformation and mapping to FHIR models and terminologies. The use of ML and NLP for unstructured data is promising and has been applied to specific use case scenarios. In addition, terminology services are needed to accelerate their use and adoption; furthermore, techniques and tools to automate annotation and ontology comparison should help reduce human interaction.


Assuntos
Registros Eletrônicos de Saúde , Semântica , Humanos , Idioma , Bases de Dados Factuais , Atenção à Saúde
14.
J Med Internet Res ; 26: e47846, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411999

RESUMO

BACKGROUND: The Network University Medicine projects are an important part of the German COVID-19 research infrastructure. They comprise 2 subprojects: COVID-19 Data Exchange (CODEX) and Coordination on Mobile Pandemic Apps Best Practice and Solution Sharing (COMPASS). CODEX provides a centralized and secure data storage platform for research data, whereas in COMPASS, expert panels were gathered to develop a reference app framework for capturing patient-reported outcomes (PROs) that can be used by any researcher. OBJECTIVE: Our study aims to integrate the data collected with the COMPASS reference app framework into the central CODEX platform, so that they can be used by secondary researchers. Although both projects used the Fast Healthcare Interoperability Resources (FHIR) standard, it was not used in a way that data could be shared directly. Given the short time frame and the parallel developments within the CODEX platform, a pragmatic and robust solution for an interface component was required. METHODS: We have developed a means to facilitate and promote the use of the German Corona Consensus (GECCO) data set, a core data set for COVID-19 research in Germany. In this way, we ensured semantic interoperability for the app-collected PRO data with the COMPASS app. We also developed an interface component to sustain syntactic interoperability. RESULTS: The use of different FHIR types by the COMPASS reference app framework (the general-purpose FHIR Questionnaire) and the CODEX platform (eg, Patient, Condition, and Observation) was found to be the most significant obstacle. Therefore, we developed an interface component that realigns the Questionnaire items with the corresponding items in the GECCO data set and provides the correct resources for the CODEX platform. We extended the existing COMPASS questionnaire editor with an import function for GECCO items, which also tags them for the interface component. This ensures syntactic interoperability and eases the reuse of the GECCO data set for researchers. CONCLUSIONS: This paper shows how PRO data, which are collected across various studies conducted by different researchers, can be captured in a research-compatible way. This means that the data can be shared with a central research infrastructure and be reused by other researchers to gain more insights about COVID-19 and its sequelae.


Assuntos
COVID-19 , Aplicativos Móveis , Humanos , COVID-19/epidemiologia , Consenso , Coleta de Dados , Medidas de Resultados Relatados pelo Paciente
15.
J Med Internet Res ; 26: e53369, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116424

RESUMO

BACKGROUND: Digitization shall improve the secondary use of health care data. The Government of the Kingdom of Saudi Arabia ordered a project to compile the National Master Plan for Health Data Analytics, while the Government of Estonia ordered a project to compile the Person-Centered Integrated Hospital Master Plan. OBJECTIVE: This study aims to map these 2 distinct projects' problems, approaches, and outcomes to find the matching elements for reuse in similar cases. METHODS: We assessed both health care systems' abilities for secondary use of health data by exploratory case studies with purposive sampling and data collection via semistructured interviews and documentation review. The collected content was analyzed qualitatively and coded according to a predefined framework. The analytical framework consisted of data purpose, flow, and sharing. The Estonian project used the Health Information Sharing Maturity Model from the Mitre Corporation as an additional analytical framework. The data collection and analysis in the Kingdom of Saudi Arabia took place in 2019 and covered health care facilities, public health institutions, and health care policy. The project in Estonia collected its inputs in 2020 and covered health care facilities, patient engagement, public health institutions, health care financing, health care policy, and health technology innovations. RESULTS: In both cases, the assessments resulted in a set of recommendations focusing on the governance of health care data. In the Kingdom of Saudi Arabia, the health care system consists of multiple isolated sectors, and there is a need for an overarching body coordinating data sets, indicators, and reports at the national level. The National Master Plan of Health Data Analytics proposed a set of organizational agreements for proper stewardship. Despite Estonia's national Digital Health Platform, the requirements remain uncoordinated between various data consumers. We recommended reconfiguring the stewardship of the national health data to include multipurpose data use into the scope of interoperability standardization. CONCLUSIONS: Proper data governance is the key to improving the secondary use of health data at the national level. The data flows from data providers to data consumers shall be coordinated by overarching stewardship structures and supported by interoperable data custodians.


Assuntos
Atenção à Saúde , Arábia Saudita , Estônia , Humanos , Disseminação de Informação/métodos
16.
J Med Internet Res ; 26: e50049, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857066

RESUMO

BACKGROUND: It is necessary to harmonize and standardize data variables used in case report forms (CRFs) of clinical studies to facilitate the merging and sharing of the collected patient data across several clinical studies. This is particularly true for clinical studies that focus on infectious diseases. Public health may be highly dependent on the findings of such studies. Hence, there is an elevated urgency to generate meaningful, reliable insights, ideally based on a high sample number and quality data. The implementation of core data elements and the incorporation of interoperability standards can facilitate the creation of harmonized clinical data sets. OBJECTIVE: This study's objective was to compare, harmonize, and standardize variables focused on diagnostic tests used as part of CRFs in 6 international clinical studies of infectious diseases in order to, ultimately, then make available the panstudy common data elements (CDEs) for ongoing and future studies to foster interoperability and comparability of collected data across trials. METHODS: We reviewed and compared the metadata that comprised the CRFs used for data collection in and across all 6 infectious disease studies under consideration in order to identify CDEs. We examined the availability of international semantic standard codes within the Systemized Nomenclature of Medicine - Clinical Terms, the National Cancer Institute Thesaurus, and the Logical Observation Identifiers Names and Codes system for the unambiguous representation of diagnostic testing information that makes up the CDEs. We then proposed 2 data models that incorporate semantic and syntactic standards for the identified CDEs. RESULTS: Of 216 variables that were considered in the scope of the analysis, we identified 11 CDEs to describe diagnostic tests (in particular, serology and sequencing) for infectious diseases: viral lineage/clade; test date, type, performer, and manufacturer; target gene; quantitative and qualitative results; and specimen identifier, type, and collection date. CONCLUSIONS: The identification of CDEs for infectious diseases is the first step in facilitating the exchange and possible merging of a subset of data across clinical studies (and with that, large research projects) for possible shared analysis to increase the power of findings. The path to harmonization and standardization of clinical study data in the interest of interoperability can be paved in 2 ways. First, a map to standard terminologies ensures that each data element's (variable's) definition is unambiguous and that it has a single, unique interpretation across studies. Second, the exchange of these data is assisted by "wrapping" them in a standard exchange format, such as Fast Health care Interoperability Resources or the Clinical Data Interchange Standards Consortium's Clinical Data Acquisition Standards Harmonization Model.


Assuntos
Doenças Transmissíveis , Semântica , Humanos , Doenças Transmissíveis/diagnóstico , Elementos de Dados Comuns
17.
BMC Med Inform Decis Mak ; 24(1): 58, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408983

RESUMO

BACKGROUND: To gain insight into the real-life care of patients in the healthcare system, data from hospital information systems and insurance systems are required. Consequently, linking clinical data with claims data is necessary. To ensure their syntactic and semantic interoperability, the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) from the Observational Health Data Sciences and Informatics (OHDSI) community was chosen. However, there is no detailed guide that would allow researchers to follow a generic process for data harmonization, i.e. the transformation of local source data into the standardized OMOP CDM format. Thus, the aim of this paper is to conceptualize a generic data harmonization process for OMOP CDM. METHODS: For this purpose, we conducted a literature review focusing on publications that address the harmonization of clinical or claims data in OMOP CDM. Subsequently, the process steps used and their chronological order as well as applied OHDSI tools were extracted for each included publication. The results were then compared to derive a generic sequence of the process steps. RESULTS: From 23 publications included, a generic data harmonization process for OMOP CDM was conceptualized, consisting of nine process steps: dataset specification, data profiling, vocabulary identification, coverage analysis of vocabularies, semantic mapping, structural mapping, extract-transform-load-process, qualitative and quantitative data quality analysis. Furthermore, we identified seven OHDSI tools which supported five of the process steps. CONCLUSIONS: The generic data harmonization process can be used as a step-by-step guide to assist other researchers in harmonizing source data in OMOP CDM.


Assuntos
Informática Médica , Vocabulário , Humanos , Bases de Dados Factuais , Ciência de Dados , Semântica , Registros Eletrônicos de Saúde
18.
BMC Med Inform Decis Mak ; 24(Suppl 3): 103, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641585

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is a devastating disease that destroys memory and other cognitive functions. There has been an increasing research effort to prevent and treat AD. In the US, two major data sharing resources for AD research are the National Alzheimer's Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI); Additionally, the National Institutes of Health (NIH) Common Data Elements (CDE) Repository has been developed to facilitate data sharing and improve the interoperability among data sets in various disease research areas. METHOD: To better understand how AD-related data elements in these resources are interoperable with each other, we leverage different representation models to map data elements from different resources: NACC to ADNI, NACC to NIH CDE, and ADNI to NIH CDE. We explore bag-of-words based and word embeddings based models (Word2Vec and BioWordVec) to perform the data element mappings in these resources. RESULTS: The data dictionaries downloaded on November 23, 2021 contain 1,195 data elements in NACC, 13,918 in ADNI, and 27,213 in NIH CDE Repository. Data element preprocessing reduced the numbers of NACC and ADNI data elements for mapping to 1,099 and 7,584 respectively. Manual evaluation of the mapping results showed that the bag-of-words based approach achieved the best precision, while the BioWordVec based approach attained the best recall. In total, the three approaches mapped 175 out of 1,099 (15.92%) NACC data elements to ADNI; 107 out of 1,099 (9.74%) NACC data elements to NIH CDE; and 171 out of 7,584 (2.25%) ADNI data elements to NIH CDE. CONCLUSIONS: The bag-of-words based and word embeddings based approaches showed promise in mapping AD-related data elements between different resources. Although the mapping approaches need further improvement, our result indicates that there is a critical need to standardize CDEs across these valuable AD research resources in order to maximize the discoveries regarding AD pathophysiology, diagnosis, and treatment that can be gleaned from them.


Assuntos
Doença de Alzheimer , Estados Unidos/epidemiologia , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Elementos de Dados Comuns , Neuroimagem , National Institutes of Health (U.S.)
19.
BMC Med Inform Decis Mak ; 24(1): 184, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937817

RESUMO

An ever-increasing amount of data on a person's daily functioning is being collected, which holds information to revolutionize person-centered healthcare. However, the full potential of data on daily functioning cannot yet be exploited as it is mostly stored in an unstructured and inaccessible manner. The integration of these data, and thereby expedited knowledge discovery, is possible by the introduction of functionomics as a complementary 'omics' initiative, embracing the advances in data science. Functionomics is the study of high-throughput data on a person's daily functioning, that can be operationalized with the International Classification of Functioning, Disability and Health (ICF).A prerequisite for making functionomics operational are the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This paper illustrates a step by step application of the FAIR principles for making functionomics data machine readable and accessible, under strictly certified conditions, in a practical example. Establishing more FAIR functionomics data repositories, analyzed using a federated data infrastructure, enables new knowledge generation to improve health and person-centered healthcare. Together, as one allied health and healthcare research community, we need to consider to take up the here proposed methods.


Assuntos
Atividades Cotidianas , Humanos , Assistência Centrada no Paciente , Classificação Internacional de Funcionalidade, Incapacidade e Saúde
20.
BMC Med Inform Decis Mak ; 24(1): 185, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943152

RESUMO

INTRODUCTION: This paper outlines the design, implementation, and usability study results of the patient empowerment process for chronic disease management, using Patient Reported Outcome Measurements and Shared Decision-Making Processes. BACKGROUND: The ADLIFE project aims to develop innovative, digital health solutions to support personalized, integrated care for patients with severe long-term conditions such as Chronic Obstructive Pulmonary Disease, and/or Chronic Heart Failure. Successful long-term management of patients with chronic conditions requires active patient self-management and a proactive involvement of patients in their healthcare and treatment. This calls for a patient-provider partnership within an integrated system of collaborative care, supporting self-management, shared-decision making, collection of patient reported outcome measures, education, and follow-up. METHODS: ADLIFE follows an outcome-based and patient-centered approach where PROMs represent an especially valuable tool to evaluate the outcomes of the care delivered. We have selected 11 standardized PROMs for evaluating the most recent patients' clinical context, enabling the decision-making process, and personalized care planning. The ADLIFE project implements the "SHARE approach' for enabling shared decision-making via two digital platforms for healthcare professionals and patients. We have successfully integrated PROMs and shared decision-making processes into our digital toolbox, based on an international interoperability standard, namely HL7 FHIR. A usability study was conducted with 3 clinical sites with 20 users in total to gather feedback and to subsequently prioritize updates to the ADLIFE toolbox. RESULTS: User satisfaction is measured in the QUIS7 questionnaire on a 9-point scale in the following aspects: overall reaction, screen, terminology and tool feedback, learning, multimedia, training material and system capabilities. With all the average scores above 6 in all categories, most respondents have a positive reaction to the ADLIFE PEP platform and find it easy to use. We have identified shortcomings and have prioritized updates to the platform before clinical pilot studies are initiated. CONCLUSIONS: Having finalized design, implementation, and pre-deployment usability studies, and updated the tool based on further feedback, our patient empowerment mechanisms enabled via PROMs and shared decision-making processes are ready to be piloted in clinal settings. Clinical studies will be conducted based at six healthcare settings across Spain, UK, Germany, Denmark, and Israel.


Assuntos
Tomada de Decisão Compartilhada , Participação do Paciente , Medidas de Resultados Relatados pelo Paciente , Humanos , Doença Crônica/terapia , Empoderamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA