Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunol Rev ; 313(1): 15-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316810

RESUMO

Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.


Assuntos
Fator D do Complemento , Via Alternativa do Complemento , Humanos , Animais , Camundongos , Fator D do Complemento/genética , Fator D do Complemento/metabolismo , Via Alternativa do Complemento/fisiologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Proteínas do Sistema Complemento , Camundongos Knockout
2.
FASEB J ; 38(5): e23543, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466278

RESUMO

Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway capable of interacting with collectin-10 (CL-10) and the MASPs to activate the complement cascade. Alternative splicing of the COLEC11 gene gives rise to two different isoforms found in serum (A and D). These isoforms vary in the length of their collagen-like region, which is involved in the stabilization of the trimeric subunit and the interaction with the MASPs. Here we aim at elucidating the biological differences of naturally occurring CL-11 isoforms A and D. We produced recombinant CL-11 as independent isoforms (CL-11A and CL-11D) and together with CL-10 (CL-10/11A, CL-10/11D). Both CL-11 isoforms associated with CL-10, but CL-11D did so to a lesser extent. CL-10/11 heterocomplexes were composed of trimeric subunits of CL-10 and CL-11, as opposed to CL-10 and CL-11 homotrimers. Heterocomplexes were more stable and migrated with higher apparent molecular weights. Immunoprecipitation of serum CL-11 and subsequent mass spectrometry analysis confirmed that native CL-11 circulates in the form of CL-10/11 heterocomplexes that associate with MASP-1, and MASP-3, but not necessarily MASP-2. Despite a shorter collagen region, CL-11D was capable to bind to the MASPs, suggesting that the missing exon 4 is not required for MASP association CL-11D had a reduced ligand binding compared to full-length CL-11A. Based on its reduced ability to oligomerize, form CL-10/11 heterocomplexes, and bind to ligands, we hypothesize that CL-11D may have a limited complement activation potential compared to full-length CL-11A.


Assuntos
Processamento Alternativo , Serina Proteases Associadas a Proteína de Ligação a Manose , Isoformas de Proteínas/genética , Colágeno , Colectinas/genética
3.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37878754

RESUMO

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Ativação do Complemento , Modelos Animais de Doenças , Proteínas do Sistema Complemento
4.
J Autoimmun ; 143: 103166, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219652

RESUMO

The complement system plays a central role in the pathogenesis of Systemic Lupus Erythematosus (SLE), but most studies have focused on the classical pathway. Ficolin-3 is the main initiator of the lectin pathway of complement in humans, but its role in systemic autoimmune disease has not been conclusively determined. Here, we combined biochemical and genetic approaches to assess the contribution of ficolin-3 to SLE risk and disease manifestations. Ficolin-3 activity was measured by a functional assay in serum or plasma samples from Swedish SLE patients (n = 786) and controls matched for age and sex (n = 566). Genetic variants in an extended 300 kb genomic region spanning the FCN3 locus were analyzed for their association with ficolin-3 activity and SLE manifestations in a Swedish multicenter cohort (n = 985). Patients with ficolin-3 activity in the highest tertile showed a strong enrichment in an SLE cluster defined by anti-Sm/DNA/nucleosome antibodies (OR 3.0, p < 0.001) and had increased rates of hematological disease (OR 1.4, p = 0.078) and lymphopenia (OR = 1.6, p = 0.039). Genetic variants associated with low ficolin-3 activity mapped to an extended haplotype in high linkage disequilibrium upstream of the FCN3 gene. Patients carrying the lead genetic variant associated with low ficolin-3 activity had a lower frequency of hematological disease (OR 0.67, p = 0.018) and lymphopenia (OR 0.63, p = 0.031) and fewer autoantibodies (p = 0.0019). Loss-of-function variants in the FCN3 gene were not associated with SLE, but four (0.5 %) SLE patients developed acquired ficolin-3 deficiency where ficolin-3 activity in serum was depleted following diagnosis of SLE. Taken together, our results provide genetic and biochemical evidence that implicate the lectin pathway in hematological SLE manifestations. We also identify lectin pathway activation through ficolin-3 as a factor that contributes to the autoantibody response in SLE.


Assuntos
Doenças Hematológicas , Lúpus Eritematoso Sistêmico , Linfopenia , Humanos , Anticorpos Antinucleares , Autoanticorpos , Proteínas do Sistema Complemento , Ficolinas , Lectinas/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/genética
5.
FASEB J ; 37(11): e23256, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823685

RESUMO

The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Animais , Ovinos , Antígenos CD55/farmacologia , Lectinas/metabolismo , Fatores de Transcrição , Inativadores do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38178632

RESUMO

BACKGROUND: C4d mesangial deposition, a hallmark of lectin pathway activation in IgA nephropathy (IgAN), has been shown to be associated with risk of kidney failure. To date, the relationship between urinary C4d and renal outcome remain unelucidated. METHODS: A total of 508 patients with biopsy-proven IgAN were enrolled in this study, whose baseline urine samples at the time of biopsy were collected and the levels of urinary C4d were quantified by enzyme-linked immunosorbent assay. The time-averaged C4d (TA-C4d) and the change in proteinuria were measured in sequential urine samples obtained from IgAN patients. The kidney progression event was defined as a 50% estimated glomerular filtration rate (eGFR) decline or end-stage kidney disease (ESKD) or death. RESULTS: After a median follow-up of 36 months, 70 (13.8%) of the participants reached the kidney progression event. Higher levels of urinary C4d/creatinine were found to be associated with decreased eGFR, massive proteinuria, lower serum albumin levels, hypertension, and severe Oxford E and T scores. Upon adjusting for traditional risk factors (including demographics, eGFR, proteinuria, hypertension, Oxford pathologic score, and immunosuppressive therapy), elevated levels of urinary C4d/creatinine were independently associated with an increased risk of CKD progression (adjusted HR per standard deviation increment of log-transformed C4d/creatinine: 1.46; 95% CI: 1.04 to 2.06; P=0.030). In reference to the low C4d group, the risk of poor renal outcome increased for the high C4d group (adjusted HR: 1.93; 95% CI: 1.05 to 3.54; P=0.033). Additionally, a low baseline C4d level was independently assosicated with a favorable proteinuria response to immunosuppressive therapy at three months (adjusted relative risk: 2.20; 95% CI: 1.04-4.63, P=0.038). CONCLUSION: The urinary C4d, serving as a non-invasive biomarker, is associated with the progression of IgAN and holds the potential to predict proteinuria response in this disease.

7.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338844

RESUMO

The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.


Assuntos
Lectinas , Serina Proteases Associadas a Proteína de Ligação a Manose , Animais , Lectinas/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Ativação do Complemento , Ficolinas , Proteínas do Sistema Complemento , Peptídeo Hidrolases
8.
J Biol Chem ; 298(6): 101985, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483450

RESUMO

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Assuntos
Proteínas de Escherichia coli/química , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Proteínas Periplásmicas/química , Sítios de Ligação , Lectina de Ligação a Manose da Via do Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/metabolismo , Subunidades Proteicas
9.
Clin Immunol ; 253: 109678, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315680

RESUMO

C2 is an attractive therapeutic target for many complement-mediated diseases. We developed Nab1B10, a new anti-C2 nanobody that potently and selectively inhibits both the classical and lectin pathways of complement activation. Mechanistically, Nab1B10 binds to the C2a portion of C2 and inhibits the assembly of C3 convertase C4b2a. Nab1B10 cross-reacts with monkey but not rodent C2 and inhibits classical pathway-mediated hemolysis. Using a new complement humanized mouse model of autoimmune hemolytic anemia (AIHA), we demonstrated that Nab1B10 abolished classical pathway complement activation-mediated hemolysis in vivo. We also developed C2-neutralizing bi- and tetra-valent antibodies based on Nab1B10 and found these antibodies significantly more potent than the other anti-C2 monoclonal antibody that is already in clinical trials. These data suggest that these novel C2-neutralizing nanobodies could be further developed as new therapeutics for many complement-mediated diseases, in which pathogenesis is dependent on the classical and/or lectin pathway of complement activation.


Assuntos
Anemia Hemolítica Autoimune , Complemento C2 , Camundongos , Animais , Complemento C2/metabolismo , Hemólise , Ativação do Complemento , Inativadores do Complemento
10.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37407023

RESUMO

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Via Clássica do Complemento , Lectinas , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Ativação do Complemento , Nefrite Lúpica/diagnóstico
11.
Thromb J ; 21(1): 26, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915123

RESUMO

BACKGROUND: Transplantation-associated thrombotic microangiopathy (TA-TMA) is an endothelial injury syndrome linked to the overactivation of complement pathways. It manifests with microangiopathic hemolytic anemia, consumptive thrombocytopenia, and microvascular thrombosis leading to ischemic tissue injury. Mannose residues on fungi and viruses activate the mannose-binding lectin complement pathway, and hence activation of the lectin pathway could be one of the reasons for triggering TA-TMA. Narsoplimab, a human monoclonal antibody targeting MASP-2 is a potent inhibitor of the lectin pathway. We describe the transplant course of a pediatric patient who developed TA-TMA following Candida-triggered macrophage activation syndrome and was treated with Narsoplimab. The data collection was performed prospectively. CASE PRESENTATION: The six-year-old girl underwent a human leucocyte antigen (HLA) haploidentical hematopoietic stem cell transplant using post-transplant Cyclophosphamide for severe aplastic anemia. In the second week of the transplant, the patient developed macrophage activation syndrome necessitating treatment with steroids and intravenous immunoglobulin. Subsequently, USG abdomen and blood fungal PCR revealed the diagnosis of hepatosplenic candidiasis. Candida-triggered macrophage activation syndrome responded to antifungals, steroids, intravenous immunoglobulin, and alemtuzumab. However, the subsequent clinical course was complicated by thrombotic microangiopathy. The patient developed hypertension in the 2nd week, followed by high lactate dehydrogenase (1010 U/L), schistocytes (5 per hpf), low haptoglobin (< 5 mg/dl), thrombocytopenia, and anemia in the 3rd week. Ciclosporin was stopped, and the patient was treated with 10 days of defibrotide without response. The course was further complicated by the involvement of the gastrointestinal tract and kidneys. She had per rectal bleeding with frequent but low-volume stools, severe abdominal pain, and hypoalbuminemia with a rising urine protein:creatinine ratio. Narsoplimab was started in the 5th week of the transplant. A fall in lactate dehydrogenase was observed after starting Narsoplimab. This was followed by the resolution of gastrointestinal symptoms, proteinuria, and recovery of cytopenia. The second episode of TA-TMA occurred with parvoviraemia and was also successfully treated with Narsoplimab. CONCLUSION: Lectin pathway inhibition could be useful in treating the fatal complication of transplant-associated thrombotic microangiopathy.

12.
J Biol Chem ; 297(1): 100865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118237

RESUMO

During feeding, a tick's mouthpart penetrates the host's skin and damages tissues and small blood vessels, triggering the extrinsic coagulation and lectin complement pathways. To elude these defense mechanisms, ticks secrete multiple anticoagulant proteins and complement system inhibitors in their saliva. Here, we characterized the inhibitory activities of the homologous tick salivary proteins tick salivary lectin pathway inhibitor, Salp14, and Salp9Pac from Ixodesscapularis in the coagulation cascade and the lectin complement pathway. All three proteins inhibited binding of mannan-binding lectin to the polysaccharide mannan, preventing the activation of the lectin complement pathway. In contrast, only Salp14 showed an appreciable effect on coagulation by prolonging the lag time of thrombin generation. We found that the anticoagulant properties of Salp14 are governed by its basic tail region, which resembles the C terminus of tissue factor pathway inhibitor alpha and blocks the assembly and/or activity of the prothrombinase complex in the same way. Moreover, the Salp14 protein tail contributes to the inhibition of the lectin complement pathway via interaction with mannan binding lectin-associated serine proteases. Furthermore, we identified BaSO4-adsorbing protein 1 isolated from the tick Ornithodoros savignyi as a distant homolog of tick salivary lectin pathway inhibitor/Salp14 proteins and showed that it inhibits the lectin complement pathway but not coagulation. The structure of BaSO4-adsorbing protein 1, solved here using NMR spectroscopy, indicated that this protein adopts a noncanonical epidermal growth factor domain-like structural fold, the first such report for tick salivary proteins. These data support a mechanism by which tick saliva proteins simultaneously inhibit both the host coagulation cascade and the lectin complement pathway.


Assuntos
Proteínas de Artrópodes/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Lectinas/genética , Proteínas e Peptídeos Salivares/ultraestrutura , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Coagulação Sanguínea/genética , Vasos Sanguíneos/parasitologia , Vasos Sanguíneos/patologia , Lectina de Ligação a Manose da Via do Complemento/genética , Ixodes/patogenicidade , Ixodes/ultraestrutura , Lectinas/ultraestrutura , Espectroscopia de Ressonância Magnética , Conformação Proteica , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Trombina/genética , Carrapatos/genética , Carrapatos/patogenicidade
13.
J Biol Chem ; 297(6): 101352, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715129

RESUMO

The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.


Assuntos
Ativação do Complemento , Crassostrea/imunologia , Lectinas Tipo C/imunologia , Animais , Complemento C3/imunologia , Crassostrea/microbiologia , Imunidade Inata , Fagocitose , Vibrio/imunologia
14.
Genet Med ; 24(8): 1653-1663, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511137

RESUMO

PURPOSE: Emerging evidence suggest that infection-dependent hyperactivation of complement system (CS) may worsen COVID-19 outcome. We investigated the role of predicted high impact rare variants - referred as qualifying variants (QVs) - of CS genes in predisposing asymptomatic COVID-19 in elderly individuals, known to be more susceptible to severe disease. METHODS: Exploiting exome sequencing data and 56 CS genes, we performed a gene-based collapsing test between 164 asymptomatic subjects (aged ≥60 years) and 56,885 European individuals from the Genome Aggregation Database. We replicated this test comparing the same asymptomatic individuals with 147 hospitalized patients with COVID-19. RESULTS: We found an enrichment of QVs in 3 genes (MASP1, COLEC11, and COLEC10), which belong to the lectin pathway, in the asymptomatic cohort. Analyses of complement activity in serum showed decreased activity of lectin pathway in asymptomatic individuals with QVs. Finally, we found allelic variants associated with asymptomatic COVID-19 phenotype and with a decreased expression of MASP1, COLEC11, and COLEC10 in lung tissue. CONCLUSION: This study suggests that genetic rare variants can protect from severe COVID-19 by mitigating the activity of lectin pathway and prothrombin. The genetic data obtained through ES of 786 asymptomatic and 147 hospitalized individuals are publicly available at http://espocovid.ceinge.unina.it/.


Assuntos
COVID-19 , Idoso , COVID-19/genética , Colectinas/genética , Colectinas/metabolismo , Células Germinativas , Humanos , Lectinas/genética , SARS-CoV-2 , Sequenciamento do Exoma
15.
Microb Pathog ; 164: 105408, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35063609

RESUMO

Infection caused by K. pneumoniae is associated with severe inflammation due to stimulation of the innate immune components including the complement system, which is the main player of the innate immune response. Excessive complement-mediated inflammation may cause severe lung injury. Here we clearly show that K. pneumoniae binds to different lectin pathway carbohydrate recognition molecules and activates the complement cascade via the LP. Administration of anti-CL-11 antibodies 6 h before the infection impairs LP functional activity but it shows no effect on the survival time of mice infected with K. pneumoniae. Similarly, no significant difference in bacterial load in blood and lung tissues was observed between mice that received anti-CL-11 and control group treated with an isotype antibody. Interestingly, treatment of mice with anti-CL-11 prior to infection significantly improved histopathological changes and lung injury score induced by K. pneumoniae. Moreover, administration of anti-CL-11 reduced leukocytes infiltration into lung tissues and decreased the levels of the inflammatory mediators TNF-α, IL-6, and IL-1ß in the infected mice. These findings indicate that inhibition of the LP could secure a significant level of protection against lung injury during the infection caused by K. pneumoniae.


Assuntos
Infecções por Klebsiella , Pneumonia , Animais , Inflamação/patologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Pulmão/patologia , Camundongos , Pneumonia/tratamento farmacológico , Pneumonia/patologia
16.
Scand J Immunol ; 96(3): e13196, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35673952

RESUMO

Patients with common variable immunodeficiency (CVID) display low antibody levels and associated symptoms, including an increased risk of infections. The causes of CVID are uncertain and likely heterogeneous. The complement system protects against pathogens and plays essential roles in homeostasis and development. The influence of the complement system in CVID is not established. We investigated CVID patients and healthy individuals for plasma levels of the complement proteins: MASP-1, MASP-2, MASP-3, MAp19 and MAp44. We also tested other patients with symptoms similar to the CVID patients. CVID patients had lower average MASP-2 and MAp44 levels than healthy individuals (P < 0.01); the MASP-2 level was 0.73-fold lower, and the MAp44 level was 0.87-fold lower. This was not observed in the other patient cohorts studied. Our findings in this exploratory study provide new insights into CVID and introduce a complement perspective for future investigations into the underlying mechanisms of the disease.


Assuntos
Imunodeficiência de Variável Comum , Imunidade Inata , Serina Proteases Associadas a Proteína de Ligação a Manose , Proteínas do Sistema Complemento , Humanos , Sistema Imunitário/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo
17.
Muscle Nerve ; 66(2): 175-182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35581952

RESUMO

INTRODUCTION/AIMS: The mechanism of complement-mediated neurological injury in vasculitic neuropathy associated with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) is unknown. The current study aimed to investigate the local activation of the complement system in vasculitic neuropathy associated with SLE and RA. METHODS: We analyzed sural nerve biopsy specimens collected from patients with SLE (n = 12) and RA (n = 12). The deposition of complement components comprising the classical and lectin pathways was assessed via immunohistochemistry. RESULTS: The disease duration was longer in the RA group than in the SLE group (median [interquartile range]: 11.5 [5.5-31.0] and 4 [2-10] y, respectively). Complement components were found in the epineurial blood vessel walls in patients with SLE and RA, but not in controls. Deposition of the classical pathway component C1q in the blood vessel wall was more commonly observed in the SLE group (71.3% [25.6-85.8]) than in the RA group (20.1% [10.5-35.6]). As for the lectin pathway component, the incidence of ficolin-3 deposition in the blood vessel wall was higher in the SLE group (42.3% [25.7-51.3]) than in the RA group (17.2% [10.3-26.8]). On the contrary, the mannose-binding lectin level was higher in the RA group (37.5% [21.7-51.4]) than in the SLE group (17.8% [11.4-31.0]). DISCUSSION: The classical and lectin pathways of the complement system may be involved in vasculitic neuropathy associated with SLE and RA.


Assuntos
Artrite Reumatoide , Proteínas do Sistema Complemento , Lúpus Eritematoso Sistêmico , Artrite Reumatoide/complicações , Artrite Reumatoide/patologia , Humanos , Fatores Imunológicos , Lectinas , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/patologia
18.
Nephrol Dial Transplant ; 37(11): 2119-2127, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35104893

RESUMO

BACKGROUND: Positive glomerular C4d staining, representative of lectin pathway activation, has been proven to be associated with unfavorable outcomes in immunoglobulin A nephropathy (IgAN). Our previous study suggested that urinary C4d correlated positively with an increase in crescents while the relationship between urinary C4d and disease severity and progression remains unelucidated. METHODS: In this study we enrolled 168 patients diagnosed with IgAN with varying proportions of crescent formation at the time of biopsy. An independent cohort of 107 IgAN patients was enrolled for validation. Kidney biopsy specimens were stained using immunohistochemistry. Urinary C4d levels at renal biopsy were measured by enzyme-linked immunosorbent assay. The primary endpoint was end-stage kidney disease (ESKD). RESULTS: Higher urinary C4d/creatinine levels were associated with a lower estimated glomerular filtration rate (eGFR); massive proteinuria; hypertension and severe Oxford M, E, T and C scores. After a median follow-up of 19 months (interquartile range 9-27), 53 (31.5%) participants reached ESKD. High urinary C4d/creatinine levels were independently and significantly associated with a risk of developing ESKD [hazard ratio per standard deviation increment of log-transformed C4d/creatinine 7.623 (95% confidence interval 4.117-14.113)]. CONCLUSIONS: The urinary C4d/creatinine level is a potential useful biomarker that was associated with disease severity and progression in patients with IgAN and crescents.


Assuntos
Glomerulonefrite por IGA , Falência Renal Crônica , Humanos , Biomarcadores/metabolismo , Estudos de Coortes , Creatinina , Progressão da Doença , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/patologia , Falência Renal Crônica/complicações , Lectinas , Estudos Retrospectivos
19.
Nephrol Dial Transplant ; 37(2): 318-325, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33315098

RESUMO

BACKGROUND: The reason why mesangial C4d deposits are detected in only certain biopsies of immunoglobulin A nephropathy (IGAN) remains unclear. We analyse the association between IgA glycosylation patterns, mesangial C4 deposition and clinical phenotypes in IgAN. METHODS: This cross-sectional study included 145 patients with idiopathic IgAN. We measured the serum levels of three different IgA1 lectin-binding specificities using enzyme-linked immunosorbent assays with and without treatment with neuraminidase and we analysed the relationship between these glycoforms, C4d mesangial deposits and clinical phenotypes. RESULTS: C4d-positive versus Cd4-negative patients had higher proteinuria [median 3.1 g/g (0.9-4.2) versus 1.8 (1-2.2); P = 0.000], haematuria [223 cells/µL (32-278) versus 99 (25-186); P = 0.000] and higher levels of IgA binding to neuraminidase untreated Helix aspersa (HA IgA1 neu-; 150.6 ± 52 U versus 96.2 ± 64.1; P = 0.000), neuraminidase untreated Helix pomatia (HPA IgA1 neu-; 0.34 ± 0.15 U versus 0.27 ± 0.13; P = 0.04), Triticum vulgaris (TV IgA1; 85.1 ± 31.7 U versus 42.2 ± 26.9; P = 0.000) and Canavalia ensiformis (ConA IgA1; 32.5 ± 18 U versus 16.7 ± 9.38; P = 0.000). The levels of HA IgA1 neu-, HPA IgA1 neu-, TV IgA1 and ConA IgA1 were all associated with the mesangial deposition of C4d, extracapillary proliferation and acute kidney injury. In receiver operating characteristics curves, HA IgA1 neu-, HPA IgA1 neu-, TV IgA1 and ConA IgA1 significantly discriminated between C4d-positive ad C4d-negative biopsies. In logistics models, TV IgA1 and ConA IgA1 were the only independent predictors of mesangial C4d deposits. CONCLUSIONS: In IgAN, the severity of the disease is associated with the level of IgA exposing N-acetyl-d-galactosamine, N-acetyl-d-glucosamine or mannose, whereas C4d deposits are only associated with elevated levels of IgA1 glycoforms exhibiting glycan residues with specificity for mannose and N-acetyl-d-glucosamine binding lectins.


Assuntos
Glomerulonefrite por IGA , Complemento C4b , Estudos Transversais , Glomerulonefrite por IGA/patologia , Humanos , Imunoglobulina A , Lectinas/metabolismo , Fragmentos de Peptídeos , Fenótipo
20.
Microbiol Immunol ; 66(10): 460-464, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924689

RESUMO

Mannose binding lectin-associated serine protease 2 (MASP2) is the effector part of mannose binding lectin (MBL) that activates the complement system in an antibody-independent manner. We aimed to investigate the role of genetic polymorphisms in the MASP2 gene and susceptibility to HTLV-1 infection. A total of 172 HTLV-1 infected individuals and 170 healthy blood donors were analyzed in this case-control study. Nine single nucleotide polymorphisms (SNPs) encompassing different regions of the MASP2 gene were genotyped with a polymerase chain reaction-sequence-specific primer (PCR-SSP) assay. The relation between the SNPs genotype and the susceptibility to HTLV-1 infection was investigated with a χ2 test considering P < 0.05 as statistically significant. Two of nine tested SNPs were associated with the risk of HTLV-1 infection. The genotype TT at rs17409276 decreased the risk of HTLV-1 (P = 0.005, OR = 0.301, 95% CI = 0.124-0.728). The genotypes CC and CT at rs2273346 were also associated with a higher risk of HTLV-1 acquisition (P = 0.004, OR = 2.225, 95% CI = 1.277-3.877). These findings highlight the importance of MASP2 genetic polymorphisms in the lectin pathway of complement activation and susceptibility to HTLV-1 infection.


Assuntos
Infecções por HTLV-I , Serina Proteases Associadas a Proteína de Ligação a Manose , Doadores de Sangue , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Irã (Geográfico) , Lectinas/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA