Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(19): 3558-3573.e7, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802028

RESUMO

Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.


Assuntos
Senescência Celular , Indicadores e Reagentes , Citometria de Fluxo
2.
Front Chem ; 10: 925931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720999

RESUMO

The transdermal administration of collagen is an important method used for wound healing and skin regeneration. However, due to the limitations of previous approaches, the process and degree of collagen transdermal absorption could only be quantitatively and qualitatively evaluated in vitro. In the present study, we introduced a novel approach that combines second-harmonic generation with two-photon excited fluorescence to visualize the dynamics of collagen transdermal absorption in vivo. High-resolution images showed that exogenous recombinant human collagen permeated the epidermis through hair follicles and sebaceous glands reached the dermis, and formed reticular structures in real time. We also validated these findings through traditional in vitro skin scanning and histological examination. Thus, our approach provides a reliable measurement for real-time evaluation of collagen absorption and treatment effects in vivo.

3.
R Soc Open Sci ; 8(3): 202312, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33959370

RESUMO

One of the main problems in controlling COVID-19 epidemic spread is the delay in confirming cases. Having information on changes in the epidemic evolution or outbreaks rise before laboratory-confirmation is crucial in decision making for Public Health policies. We present an algorithm to estimate on-stream the number of COVID-19 cases using the data from telephone calls to a COVID-line. By modelling the calls as background (proportional to population) plus signal (proportional to infected), we fit the calls in Province of Buenos Aires (Argentina) with coefficient of determination R 2 > 0.85. This result allows us to estimate the number of cases given the number of calls from a specific district, days before the laboratory results are available. We validate the algorithm with real data. We show how to use the algorithm to track on-stream the epidemic, and present the Early Outbreak Alarm to detect outbreaks in advance of laboratory results. One key point in the developed algorithm is a detailed track of the uncertainties in the estimations, since the alarm uses the significance of the observables as a main indicator to detect an anomaly. We present the details of the explicit example in Villa Azul (Quilmes) where this tool resulted crucial to control an outbreak on time. The presented tools have been designed in urgency with the available data at the time of the development, and therefore have their limitations which we describe and discuss. We consider possible improvements on the tools, many of which are currently under development.

4.
Front Immunol ; 12: 761776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745138

RESUMO

Confocal scanning laser ophthalmoscopy (cSLO) is a non-invasive technique for real-time imaging of the retina. We developed a step-by-step protocol for the semi-automatic evaluation of myeloid cells in cSLO images from CX3CR1GFP mice, expressing green fluorescent protein (GFP) under control of the endogenous CX3C chemokine receptor 1 locus. We identified cSLO parameters allowing us to distinguish animals with experimental autoimmune encephalomyelitis (EAE) from sham-treated/naïve animals. Especially cell count (CC) and the total microglial area (SuA) turned out to be reliable parameters. Comparing the cSLO results with clinical parameters, we found significant correlations between the clinical EAE score and the SuA and of the inner retinal layer thickness, measured by optical coherence tomography, with the CC as well as the SuA. As a final step, we performed immunohistochemistry to confirm that the GFP-expressing cells visualized by the cSLO are Iba1 positive and validated the step-by-step protocol against manual counting. We present a semi-automatic step-by-step protocol with a balance between fast data evaluation and adequate accuracy, which is optimized by the option to manually adapt the contrast threshold. This protocol may be useful for numerous research questions on the role of microglial polarization in models of inflammatory and degenerating CNS diseases involving the retina.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Microglia/imunologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos Transgênicos , Oftalmoscopia/métodos , Retina/diagnóstico por imagem , Retina/imunologia , Tomografia de Coerência Óptica
5.
Bio Protoc ; 10(2): e3502, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654729

RESUMO

Extracellular vesicles (EVs) are produced by all domains of life including Bacteria, Archaea and Eukarya. EVs are critical for cellular physiology and contain varied cargo: virulence factors, cell wall remodeling enzymes, extracellular matrix components and even nucleic acids and metabolites. While various protocols for isolating EVs have been established for mammalian cells, the field is actively developing tools to study EVs in other organisms. In this protocol we describe our methods to perform density gradient purification of EVs in bacterial cells, allowing for separation of EV subpopulations, followed by protection assays for EV cargo characterization. Furthermore, we devised a protocol which incorporates a fluorescent conjugate of fatty acids into EVs, the first to allow live-cell EV tracking to observe release of EVs, including during infection of mammalian cells by pathogenic bacteria. These protocols are powerful tools for EV researchers as they enable the observation of EV release and the study of the mechanisms of their formation and release.

6.
Dev Cell ; 48(4): 573-589.e4, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30745143

RESUMO

Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physiological relevance remains challenging due to a lack of appropriate model organisms. Here, we developed an in vivo model to study EV function by expressing CD63-pHluorin in zebrafish embryos. A combination of imaging methods and proteomic analysis allowed us to study biogenesis, composition, transfer, uptake, and fate of individual endogenous EVs. We identified a subpopulation of EVs with exosome features, released in a syntenin-dependent manner from the yolk syncytial layer into the blood circulation. These exosomes are captured, endocytosed, and degraded by patrolling macrophages and endothelial cells in the caudal vein plexus (CVP) in a scavenger receptor- and dynamin-dependent manner. Interference with exosome biogenesis affected CVP growth, suggesting a role in trophic support. Altogether, our work represents a system for studying endogenous EV function in vivo with high spatiotemporal accuracy, demonstrating functional inter-organ communication by exosomes.


Assuntos
Transporte Biológico/fisiologia , Células Endoteliais/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Células Cultivadas , Proteômica/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA