Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781119

RESUMO

Although transition-metal nitrides have been widely applied for several decades, experimental investigations of their high-resolution electronic band structures are rare due to the lack of high-quality single-crystalline samples. Here, we report on the first momentum-resolved electronic band structures of titanium nitride (TiN) films, which are remarkable nitride superconductors. The measurements of the crystal structures and electrical transport properties confirmed the high quality of these films. More importantly, from a combination of high-resolution angle-resolved photoelectron spectroscopy and first-principles calculations, the extracted Coulomb interaction strength of TiN films can be as large as 8.5 eV, whereas resonant photoemission spectroscopy yields a value of 6.26 eV. These large values of Coulomb interaction strength indicate that superconducting TiN is a strongly correlated system. Our results uncover the unexpected electronic correlations in transition-metal nitrides, potentially providing a perspective not only to understand their emergent quantum states but also to develop their applications in quantum devices.

2.
Small ; 20(16): e2308818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018307

RESUMO

For exploring advanced Zn-ion batteries (ZIBs) with long lifespan and high Coulombic efficiency (CE), the critically important point is to limit the undesired Zn dendrite and parasitic reactions. Among the coating for electrode is a promising strategy, relying on the trade-off between its thickness and stability to achieve the ultra-stable Zn anodes in ZIBs. Herein, a submicron-thick (≈0.4 µm) zincophilic CrN coatings are fabricated by a facile and industry-compatible magnetron sputtering approach. It is exhilarating that the ultrathin and dense CrN coatings with strong adsorption ability for Zn2+ exhibit an impressive lifespan up to 3700 h with ≈100% CE at 1 mA cm-2. Along with the experiments and theoretical calculations, it is verified that the introduced CrN coatings cannot only effectively suppress the dendrite growth and notorious parasitic reactions, but also allow the uniform Zn deposition due to the reduced nucleation energy. Moreover, the as-assembled Zn@CrN‖MnO2 full cell delivers a high specific capacity of 171.1 mAh g-1 after 1000 cycles at 1 A g-1, much better than that of Zn‖MnO2 analog (97.8 mAh g-1). This work provides a facile strategy for scalable fabrication of ultrathin zincophilic coating to push forward the practical applications of ZIBs.

3.
Chemphyschem ; 25(11): e202300858, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483867

RESUMO

Lithium-sulfur batteries have a high energy density but lack cycle stability to reach market maturity. This is mainly due to the polysulfide shuttle mechanism, i. e., the leaching of active material from the cathode into the electrolyte and subsequent side reactions. We demonstrate how to attenuate the polysulfide shuttle by magnetron sputtering molybdenum oxysulfide, manganese oxide, and chromium oxide onto microporous polypropylene separators. The morphology of the amorphous coatings was analyzed by SEM and XRD. Electrochemical cyclization quantified how these coatings improved Coulombic efficiency and cycle stability. These tests were conducted in half cells. We compare the different performances of the different coatings with the known chemical and adsorption properties of the respective coating materials.

4.
Nanotechnology ; 35(18)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271739

RESUMO

We studied the phase change and resistive switching characteristics of copper oxide (CuxO) films through post-thermal annealing. This investigation aimed to assess the material's potential for a variety of electrical devices, exploring its versatility in electronic applications. The CuxO films deposited by RF magnetron sputtering were annealed at 300, 500, and 700 °C in ambient air for 4 min by rapid thermal annealing (RTA) method, and then it was confirmed that the structural phase change from Cu2O to CuO occurred with increasing annealing temperature. Resistive random-access memory (ReRAM) devices with Au/CuxO/p+-Si structures were fabricated, and the ReRAM properties appeared in CuO-based devices, while Cu2O ReRAM devices did not exhibit resistive switching behavior. The CuO ReRAM device annealed at 500 °C showed the best properties, with a on/off ratio of 8 × 102, good switching endurance of ∼100 cycles, data retention for 104s, and stable uniformity in the cumulative probability distribution. This characteristic change could be explained by the difference in the grain size and density of defects between the Cu2O and CuO films. These results demonstrate that superior and stable resistive switching properties of RF-sputtered CuxO films can be obtained by low-temperature RTA.

5.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593761

RESUMO

Technological advances have accelerated the pursuit of transparent conducting thin films (TCFs) with superior mechanical properties, durability, efficient optoelectrical performance and substrate compatibility as a pivotal focus in the realm of flexible transparent electronics. Against this background, this work investigates the fabrication of multilayer silver nanowire (AgNW) thin films reinforced by zinc tin oxide (ZTO) thin film encapsulation on polycarbonate substrates by a combination of sputtering and spin-coating techniques. An investigation of the influence of AgNW percolation networks on the optoelectrical properties of ZTO/AgNW/ZTO hybrid thin films was carried out. The impact of ZTO protective layers on the enhancement of electrical properties, adhesivity, flexibility and environmental stability of the multilayer TCF was elucidated. Additionally, to explore the compatibility of the fabricated TCF in integrated device and stealth applications, its electromagnetic interference shielding properties were investigated. The hybrid TCF showed 99.47% EMI shielding efficiency with an absorption-dominant EMI shielding effectiveness of 22.7 dB in the x-band region.

6.
Environ Res ; 246: 118177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215926

RESUMO

As a neurotoxin, it is necessary to establish a low cost, stable and sensitive method for the quantitative detection of hydrazine. Using Co-ZIF (zeolite imidazole framework) nanorods as precursor, CoS2 hollow nanotube array heterogeneous structure loaded with Cu nanoparticles were prepared on carbon cloth (CC) by etching, calcination and plasma magnetron sputtering (CoS2@Cu HNTA/CC). As a self-supporting electrode, its hollow heterogeneous structure provides a large area of electron transfer channel for the oxidation of the food pollutant hydrazine. In addition, bimetallic synergies and in situ N doping regulated the electronic structure of CoS2@Cu HNTA/CC, and thus significantly improved the electrical conductivity and catalytic activity. As an efficient hydrazine sensor with a wide linear range of 1 µM L-1-10 mM (1 µM-1 mM and 1 mM-10 mM), its sensitivity and the limit of detection are 7996 µA mM-1 cm-2, 3772 µA mM-1 cm-2 and 0.276 µM (S/N = 3), respectively. This study provides a new strategy for the construction of MOFs (Metal Organic Framework)-derived bimetallic composites and their application in electrochemical sensing.


Assuntos
Técnicas Eletroquímicas , Nanotubos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Carbono/química , Hidrazinas , Água
7.
Sci Technol Adv Mater ; 25(1): 2357536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855018

RESUMO

The microstructural evolution of Cu/Mo nanomultilayers upon annealing was investigated by X-ray diffraction and transmission electron microscopy. The isothermal annealing process in the temperature ranges of 300-850°C was conducted to understand the thermal behavior of the sample and follow the transformation into a nanocomposite. Annealing at 600°C led to the initiation of grain grooving in the investigated nanomultilayer, and it degraded into a spheroidized nanocomposite structure at 800°C. The sample kept the as-deposited Cu {111}//Mo{110} fiber texture up to 850°C. The residual stress was investigated to explain microstructure changes. The activation energy of degradation kinetics of Cu/Mo nanomultilayers was determined to understand the rate-determining mechanism for the degradation of nanolaminate structures.


This study investigates the microstructural evolution of Cu/Mo nanomultilayers during vacuum annealing up to 85°C and provides important insights into their thermal stability and degradation mechanisms for development and application.

8.
Small ; 19(49): e2303710, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612819

RESUMO

The increasing demand for micro-thermoelectric coolers and generators promotes the research on thermoelectric (TE) thin films. As a promising medium-temperature TE material, GeTe has attracted wide attention recently. However, the thermoelectric performance of thin-film GeTe remains inferior. Herein, oriented GeTe films with excessive Ge are obtained by magnetron co-sputtering technique, which can not only reduce the carrier concentration but also increase the carrier mobility, maintaining the high electrical conductivity of GeTe. Furthermore, higher structural symmetry and grain boundary scattering enhance the Seebeck coefficient of oriented GeTe films. As a result, the power factor (PF) value can reach as high as 2848 µW m-1 K-2 at room temperature and increase to 5263 µW m-1 K-2 at 600 K. Furthermore, a TE device with the Ge-rich GeTe thin film is fabricated and the maximum output power density (power per unit area) reaches 0.3 W cm-2 at ΔT = 250 K. This work demonstrates that the stoichiometry and orientation modulations are effective strategies to improve the thermoelectric performance of GeTe thin films.

9.
Small ; 19(43): e2302999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381097

RESUMO

In this work, using a combination of scanning and transmission electron microscopy (SEM and TEM), the transformations of palladium-containing species in imidazolium ionic liquids in reaction mixtures of the Mizoroki-Heck reaction and in related organic media are studied to understand a challenging question of the relative reactivity of organic halides as key substrates in modern catalytic technologies. The microscopy technique detects the formation of a stable nanosized palladium phase under the action of an aryl (Ar) halide capable of forming microcompartments in an ionic liquid. For the first time, the correlation between the reactivity of the aryl halide and the microdomain structure is observed: Ar-I (well-developed microdomains) > Ar-Br (microphase present) > Ar-Cl (minor amount of microphase). Previously, it is assumed that molecular level factors, namely, carbon-halogen bond strength and the ease of bond breakage, are the sole factors determining the reactivity of aryl halides in catalytic transformations. The present work reports a new factor connected with the nature of the organic substrates used and their ability to form a microdomain structure and concentrate metallic species, highlighting the importance of considering both the molecular and microscale properties of the reaction mixtures.

10.
J Synchrotron Radiat ; 30(Pt 4): 708-716, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255023

RESUMO

Differential deposition by DC magnetron sputtering was applied to correct for figure errors of X-ray mirrors to be deployed on low-emittance synchrotron beamlines. During the deposition process, the mirrors were moved in front of a beam-defining aperture and the required velocity profile was calculated using a deconvolution algorithm. The surface figure was characterized using conventional off-line visible-light metrology instrumentation (long trace profiler and Fizeau interferometer) before and after the deposition. WSi2 was revealed to be a promising candidate material since it conserves the initial substrate surface roughness and limits the film stress to acceptable levels. On a 300 mm-long flat Si mirror the average height errors were reduced by a factor of 20 down to 0.2 nm root mean square. This result shows the suitability of WSi2 for differential deposition. Potential promising applications include the upgrade of affordable, average-quality substrates to the standards of modern synchrotron beamlines.


Assuntos
Algoritmos , Síncrotrons , Raios X , Radiografia
11.
Nanotechnology ; 35(9)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38035378

RESUMO

The morphology of numerous nanocolumnar thin films deposited by the magnetron sputtering technique at oblique geometries and at relatively low temperatures has been analyzed for materials as different as Au, Pt, Ti, Cr, TiO2, Al, HfN, Mo, V, WO3and W. Despite similar deposition conditions, two characteristic nanostructures have been identified depending on the material: a first one defined by highly tilted and symmetric nanocolumnar structures with a relatively high film density, and a second one characterized by rather vertical and asymmetric nanocolumns, with a much lower film density. With the help of a model, the two characteristic nanostructures have been linked to different growth dynamics and, specifically, to different surface relaxation mechanisms upon the incorporation of gaseous species with kinetic energies above the surface binding energy. Moreover, in the case of Ti, a smooth structural transition between the two types of growths has been found when varying the value of the power used to maintain the plasma discharge. Based on these results, the existence of different surface relaxation mechanisms is proposed, which quantitatively explains numerous experimental results under the same conceptual framework.

12.
Nanotechnology ; 34(25)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36947879

RESUMO

The low temperature formation of monoclinic VO2crystal domains in nanocolumnar vanadium/oxygen thin films prepared by magnetron sputtering at oblique angles is analyzed. The synthesis procedure involved the deposition of amorphous nanocolumnar VO1.9thin films at room temperature and its subsequent annealing at temperatures between 250 °C and 330 °C in an oxygen atmosphere. The thermochromic transition of these films was found at a temperature of 47 °C when the annealing temperature was 270 °C and 58 °C when the annealing temperature was 280 °C and 290 °C, presenting a clear drop of the optical transmittance in the infrared region of the spectrum. The significant downshift in the temperature window to obtain VO2in comparison with compact films and other strategies in literature is explained by the particular morphology of the nanocolumnar structures, which contains numerous defects along with open and embedded porosity.

13.
Nanotechnology ; 34(26)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972569

RESUMO

Plasma-based sputtering onto liquids (SoL) is a straightforward approach for synthesizing small metal nanoparticles (NPs) without additional stabilizing reagents. In this work, nonionic surfactant Triton X-100 was used for the first time as a host liquid for the SoL process and the production of colloidal solutions of gold, silver and copper NPs was demonstrated. The average diameter of spherical Au NPs lies in the range from 2.6 to 5.5 nm depending on the conditions. The approach presented here opens the pathway to the production of concentrated dispersions of metal NPs of high purity that can be dispersed in water for future usage, therefore extending further the reach of this synthesis pathway.

14.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738967

RESUMO

Titanium nitride (TiN) has recently emerged as an alternative to coinage metals to enable the development of integrated plasmonic devices at visible and medium-infrared wavelengths. In this regard, its optical performance can be conveniently tuned by tailoring the process parameters of physical vapor deposition methods, such as magnetron sputtering and pulsed laser deposition (PLD). This review first introduces the fundamental features of TiN and a description on its optical properties, including insights on the main experimental techniques to measure them. Afterwards, magnetron sputtering and PLD are selected as fabrication techniques for TiN nanomaterials. The fundamental mechanistic aspects of both techniques are discussed in parallel with selected case studies from the recent literature, which elucidate the critical advantages of such techniques to engineer the nanostructure and the plasmonic performance of TiN.

15.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420609

RESUMO

Reducing the economic and environmental impact of industrial process may be achieved by the smartisation of different components. In this work, tube smartisation is presented via direct fabrication of a copper (Cu)-based resistive temperature detector (RTD) on their outer surfaces. The testing was carried out between room temperature and 250 °C. For this purpose, copper depositions were studied using mid-frequency (MF) and high-power impulse magnetron sputtering (HiPIMS). Stainless steel tubes with an outside inert ceramic coating were used after giving them a shot blasting treatment. The Cu deposition was performed at around 425 °C to improve adhesion as well as the electrical properties of the sensor. To generate the pattern of the Cu RTD, a photolithography process was carried out. The RTD was then protected from external degradation by a silicon oxide film deposited over it by means of two different techniques: sol-gel dipping technique and reactive magnetron sputtering. For the electrical characterisation of the sensor, an ad hoc test bench was used, based on the internal heating and the external temperature measurement with a thermographic camera. The results confirm the linearity (R2 > 0.999) and repeatability in the electrical properties of the copper RTD (confidence interval < 0.0005).


Assuntos
Cobre , Aço Inoxidável , Propriedades de Superfície , Cerâmica
16.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905046

RESUMO

This paper presents a test stand for testing alternating current electrical parameters of Cu-SiO2 multilayer nanocomposite structures obtained by the dual-source non-reactive magnetron sputtering method (resistance, capacitance, phase shift angle, and dielectric loss angle tangent δ). In order to confirm the dielectric nature of the test structure, measurements in the temperature range from room temperature to 373 K were carried out. The alternating current frequencies in which the measurements were made ranged from 4 Hz to 7.92 MHz. To improve the implementation of measurement processes, a program was written to control the impedance meter in the MATLAB environment. Structural studies by SEM were conducted to determine the effect of annealing on multilayer nanocomposite structures. Based on the static analysis of the 4-point method of measurements, the standard uncertainty of type A was determined, and taking into account the manufacturer's recommendations regarding the technical specification, the measurement uncertainty of type B.

17.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177727

RESUMO

This paper investigates the possibilities of creating magnetic field sensors using the direct magnetoelectric (ME) effect in a monolithic heterostructure of amorphous ferromagnetic material/langatate. Layers of 1.5 µm-thick FeCoSiB amorphous ferromagnetic material were deposited on the surface of the langatate single crystal using magnetron sputtering. At the resonance frequency of the structure, 107 kHz, the ME coefficient of linear conversion of 76.6 V/(Oe∙cm) was obtained. Furthermore, the nonlinear ME effect of voltage harmonic generation was observed with an increasing excitation magnetic field. The efficiency of generating the second and third harmonics was about 6.3 V/(Oe2∙cm) and 1.8 V/(Oe3∙cm), respectively. A hysteresis dependence of ME voltage on a permanent magnetic field was observed due to the presence of α-Fe iron crystalline phases in the magnetic layer. At the resonance frequency, the monolithic heterostructure had a sensitivity to the AC magnetic field of 4.6 V/Oe, a minimum detectable magnetic field of ~70 pT, and a low level of magnetic noise of 0.36 pT/Hz1/2, which allows it to be used in ME magnetic field sensors.

18.
Sensors (Basel) ; 23(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37430682

RESUMO

In this study, a new temperature sensor with high sensitivity was achieved by four-layer Ge and B co-doped long-period fiber grating (LPFG) based on the mode coupling principle. By analyzing the mode conversion, the influence of the surrounding refractive index (SRI), the thickness and the refractive index of the film on the sensitivity of the sensor is studied. When 10 nm-thick titanium dioxide (TiO2) film is coated on the surface of the bare LPFG, the refractive index sensitivity of the sensor can be initially improved. Packaging PC452 UV-curable adhesive with a high-thermoluminescence coefficient for temperature sensitization can realize high-sensitivity temperature sensing and meet the requirements of ocean temperature detection. Finally, the effects of salt and protein attachment on the sensitivity are analyzed, which provides a reference for the subsequent application. The sensitivity of 3.8 nm/°C in the range of 5-30 °C was achieved for this new sensor, and the resolution is about 0.00026 °C, which is over 20 times higher than ordinary temperature sensors. This new sensor meets the accuracy and range of general ocean temperature measurements and could be used in various marine monitoring and environmental protection applications.

19.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991976

RESUMO

The response of resistive In2O3-x sensing devices was investigated as a function of the NO2 concentration in different operative conditions. Sensing layers are 150 nm thick films manufactured by oxygen-free room temperature magnetron sputtering deposition. This technique allows for a facile and fast manufacturing process, at same time providing advantages in terms of gas sensing performances. The oxygen deficiency during growth provides high densities of oxygen vacancies, both on the surface, where they are favoring NO2 absorption reactions, and in the bulk, where they act as donors. This n-type doping allows for conveniently lowering the thin film resistivity, thus avoiding the sophisticated electronic readout required in the case of very high resistance sensing layers. The semiconductor layer was characterized in terms of morphology, composition and electronic properties. The sensor baseline resistance is in the order of kilohms and exhibits remarkable performances with respect to gas sensitivity. The sensor response to NO2 was studied experimentally both in oxygen-rich and oxygen-free atmospheres for different NO2 concentrations and working temperatures. Experimental tests revealed a response of 32%/ppm at 10 ppm NO2 and response times of approximately 2 min at an optimal working temperature of 200 °C. The obtained performance is in line with the requirements of a realistic application scenario, such as in plant condition monitoring.

20.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112164

RESUMO

Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. In this work, mixed copper-titanium oxide ((CuTi)Ox) thin films with various copper concentrations (0-100 at.%), deposited by magnetron sputtering and annealed at 473 K, were investigated as a prospective hydrogen gas sensing material. Scanning electron microscopy was applied to determine the morphology of the thin films. Their structure and chemical composition were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The prepared films were nanocrystalline mixtures of metallic copper, cuprous oxide, and titanium anatase in the bulk, whereas at the surface only cupric oxide was found. In comparison to the literature, the (CuTi)Ox thin films already showed a sensor response to hydrogen at a relatively low operating temperature of 473 K without using any extra catalyst. The best sensor response and sensitivity to hydrogen gas were found in the mixed copper-titanium oxides containing similar atomic concentrations of both metals, i.e., 41/59 and 56/44 of Cu/Ti. Most probably, this effect is related to their similar morphology and to the simultaneous presence of Cu and Cu2O crystals in these mixed oxide films. In particular, the studies of surface oxidation state revealed that it was the same for all annealed films and consisted only of CuO. However, in view of their crystalline structure, they consisted of Cu and Cu2O nanocrystals in the thin film volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA