Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2306367, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054805

RESUMO

Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2 @PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2 , thereby enhancing the stability of HCNRs/MnF2 @PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2 @PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.

2.
Materials (Basel) ; 13(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878247

RESUMO

Highly dense magnesium aluminate spinel bodies are usually fabricated using pressure-assisted methods, such as spark plasma sintering (SPS), in the presence of lithium fluoride as a sintering aid. The present work investigates whether the addition of transition metal fluorides promotes the sintering of MgAl2O4 bodies during SPS. At the same time, such fluorides can act as a source of optically active dopants. A commercial MgAl2O4 was mixed with 0.5 wt% of LiF, MnF2, and CoF2 and, afterwards, consolidated using SPS at 1400 °C. Although MnF2 and CoF2 promote the densification as effectively as LiF, they cause significant grain growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA