Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Angew Chem Int Ed Engl ; 63(33): e202403473, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829678

RESUMO

Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.

2.
Angew Chem Int Ed Engl ; 62(7): e202217249, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36509712

RESUMO

As a conjugated and unsymmetric building block composed of an electron-poor seven-membered sp2 carbon ring and an electron-rich five-membered carbon ring, azulene and its derivatives have been recognized as one of the most promising building blocks for novel electronic devices due to its intrinsic redox activity. By using 1,3,5-tris(4-aminophenyl)-benzene and azulene-1,3-dicarbaldehyde as the starting materials, an azulene(Azu)-based 2D conjugated covalent organic framework, COF-Azu, is prepared through liquid-liquid interface polymerization strategy for the first time. The as-fabricated Al/COF-Azu/indium tin oxide (ITO) memristor shows typical non-volatile resistive switching performance due to the electric filed induced intramolecular charge transfer effect. Associated with the unique memristive performance, a simple convolutional neural network is built for image recognition. After 8 epochs of training, image recognition accuracy of 80 % for a neutral network trained on a larger data set is achieved.

3.
Chemistry ; 27(57): 14217-14224, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459046

RESUMO

Multi-anvil and laser-heated diamond anvil methods have been used to subject Ge and Si mixtures to pressures and temperatures of between 12 and 17 GPa and 1500-1800 K, respectively. Synchrotron angle dispersive X-ray diffraction, precession electron diffraction and chemical analysis using electron microscopy, reveal recovery at ambient pressure of hexagonal Ge-Si solid solutions (P63 /mmc). Taken together, the multi-anvil and diamond anvil results reveal that hexagonal solid solutions can be prepared for all Ge-Si compositions. This hexagonal class of solid solutions constitutes a significant expansion of the bulk Ge-Si solid solution family, and is of interest for optoelectronic applications.

4.
Angew Chem Int Ed Engl ; 60(52): 26894-26903, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436810

RESUMO

The formation of a vast number of different multielement active sites in compositionally complex solid solution materials, often more generally termed high-entropy alloys, offers new and unique concepts in catalyst design, which mitigate existing limitations and change the view on structure-activity relations. We discuss these concepts by summarising the currently existing fundamental knowledge and critically assess the chances and limitations of this material class, also highlighting design strategies. A roadmap is proposed, illustrating which of the characteristic concepts could be exploited using which strategy, and which breakthroughs might be possible to guide future research in this highly promising material class for (electro)catalysis.

5.
Angew Chem Int Ed Engl ; 60(16): 9009-9014, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33527580

RESUMO

The cubic diamond (Fd 3 ‾ m) group IVA element Si has been the material driver of the electronics industry since its inception. We report synthesis of a new cubic (Im 3 ‾ m) group IVA material, a GeSn solid solution, upon heating Ge and Sn at pressures from 13 to 28 GPa using double-sided diamond anvil laser-heating and large volume press methods. Both methods were coupled with in situ angle dispersive X-ray diffraction characterization. The new material substantially enriches the seminal group IVA alloy materials landscape by introducing an eightfold coordinated cubic symmetry, which markedly expands on the conventional tetrahedrally coordinated cubic one. This cubic solid solution is formed, despite Ge never adopting the Im 3 ‾ m symmetry, melting inhibiting subsequent Im 3 ‾ m formation and reactant Ge and Sn having unlike crystal structures and atomic radii at all these pressures. This is hence achieved without adherence to conventional formation criteria and routes to synthesis. This advance creates fertile avenues for new materials development.

6.
Angew Chem Int Ed Engl ; 59(44): 19390-19402, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32452131

RESUMO

Carbon dots (CDs) are emerging as a new class of carbon nanomaterials, which have inspired growing interest for their widespread applications in anti-counterfeiting, sensing, bioimaging, optoelectronic and energy-related fields. In terms of the concept of host-guest assembly, immobilizing CDs into porous materials (PMs) has proven to be an effective strategy to avoid the aggregation of bare CDs in solid state, in particular, the host-guest synergy with both merits of CDs and PMs affords composites promising properties in afterglow and tunable emissions, as well as optimizes their performance in optics, catalysis, and energy storage. This Minireview summarizes the recent progress in the research of CDs@PMs, and highlights synthetic strategies of constructing composites and roles of porous matrices in boosting the applications of CDs in diverse areas. The prospect of future exploration and challenges are proposed for designing advanced CDs-based functional nanocomposite materials.

7.
iScience ; 27(7): 110189, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989457

RESUMO

Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn2+, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8+ T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.

8.
iScience ; 27(3): 109144, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380259

RESUMO

A micro turbine engine's thrust relies on combustion chamber efficiency, closely tied to the design of its evaporation tube. This study thoroughly investigates evaporation and atomization processes within the tube, introducing a pioneering bionic-inspired structure. Integrating a honeycomb sheet into the traditional tube, both configurations undergo a comparative analysis. Results show a direct correlation between elevated air temperatures and reduced fuel droplet diameters, leading to increased fuel evaporation rates. The bionic tube, with a 1mm-thick honeycomb sheet, 0.6 mm aperture diameter, and 3 sheets, significantly improves fuel droplet atomization and evaporation compared to the conventional design. This research holds broader significance in understanding and enhancing micro turbine engine performance.

9.
iScience ; 27(7): 110186, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021789

RESUMO

Electrospinning of nanocarbons such as graphene and carbon nanotubes typically produces mats composed of one-dimensional fibers where the carrier polymer encapsulates the nanocarbons. Recently it was found that decreasing the amount of carrier polymer in approaching the electrospinning-electrospray boundary for graphene suspensions resulted in retention of the graphene two-dimensional anisotropy with one-dimensional carrier polymer fibers connecting flakes. We explored a similar decrease in carrier polymer in MWCNT suspensions to investigate the network topology that might ensue. Unexpectedly, two-dimensional leaflet meso-networks were obtained wherein the leaflets comprise laterally aligned MWCNTs one to several nanotubes thick. A mechanism based on capillary force-driven MWCNT self-assembly activated by menisci formed during drying of electrospun fibers is presented. Such materials offer new approaches to producing high surface-area coatings for catalytic and energy applications and suggest ways of formulating two-dimensional MWCNT assemblies in metal foams and other open-cell porous materials.

10.
iScience ; 27(5): 109723, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706846

RESUMO

This study presents a machine learning (ML) framework aimed at accelerating the discovery of multi-property optimized Fe-Ni-Co alloys, addressing the time-consuming, expensive, and inefficient nature of traditional methods of material discovery, development, and deployment. We compiled a detailed heterogeneous database of the magnetic, electrical, and mechanical properties of Fe-Co-Ni alloys, employing a novel ML-based imputation strategy to address gaps in property data. Leveraging this comprehensive database, we developed predictive ML models using tree-based and neural network approaches for optimizing multiple properties simultaneously. An inverse design strategy, utilizing multi-objective Bayesian optimization (MOBO), enabled the identification of promising alloy compositions. This approach was experimentally validated using high-throughput methodology, highlighting alloys such as Fe66.8Co28Ni5.2 and Fe61.9Co22.8Ni15.3, which demonstrated superior properties. The predicted properties data closely matched experimental data within 14% accuracy. Our approach can be extended to a broad range of materials systems to predict novel materials with an optimized set of properties.

11.
ACS Appl Mater Interfaces ; 16(23): 29491-29520, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38739105

RESUMO

Piezoelectric energy harvesters have gained significant attention in recent years due to their ability to convert ambient mechanical vibrations into electrical energy, which opens up new possibilities for environmental monitoring, asset tracking, portable technologies and powering remote "Internet of Things (IoT)" nodes and sensors. This review explores various aspects of piezoelectric energy harvesters, discussing the structural designs and fabrication techniques including inorganic-based energy harvesters (i.e., piezoelectric ceramics and ZnO nanostructures) and organic-based energy harvesters (i.e., polyvinylidene difluoride (PVDF) and its copolymers). The factors affecting the performance and several strategies to improve the efficiency of devices have been also explored. In addition, this review also demonstrated the progress in flexible energy harvesters with integration of flexibility and stretchability for next-generation wearable technologies used for body motion and health monitoring devices. The applications of the above devices to harvest various forms of mechanical energy are explored, as well as the discussion on perspectives and challenges in this field.

12.
ACS Nano ; 18(26): 16343-16358, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899467

RESUMO

Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.

13.
iScience ; 26(3): 106177, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895655

RESUMO

As an elemental semiconductor, tellurium (Te) has been famous for its high hole-mobility, excellent ambient stability and topological states. Here, we realize the controllable synthesis of horizontal Te nanoribbon arrays (TRAs) with an angular interval of 60°on mica substrates by physical vapor deposition strategy. The growth of Te nanoribbons (TRs) is driven by two factors, where the intrinsic quasi-one-dimensional spiral chain structure promotes the elongation of their length; the epitaxy relationship between [110] direction of Te and [110] direction of mica facilitates the oriented growth and the expansion of their width. The bending of TRs which have not been reported is induced by grain boundary. Field-effect transistors based on TRs demonstrate high mobility and on/off ratio corresponding to 397 cm2 V-1 s-1 and 1.5×105, respectively. These phenomena supply an opportunity to deep insight into the vapor-transport synthesis of low-dimensional Te and explore its underlying application in monolithic integration.

14.
iScience ; 26(11): 108296, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026186

RESUMO

Mixed-dimensional heterostructures have drawn significant attention due to their intriguing physical properties and potential applications in electronic and optoelectronic nanodevices. However, limited by the lattice matching, the preparation of heterostructures is experimentally difficult and the underlying growth mechanism has not been well established. Here, we report a three-step seeding epitaxial growth strategy for synthesizing mixed-dimensional heterostructures of one-dimensional microwire (MW) and two-dimensional atomic thin film. Our growth strategy has successfully realized direct epitaxial growth of WSe2 film on WOx MW and significantly improves the quality of the epitaxial WSe2 monolayer, which is evidenced by the remarkably enhanced photoluminescence (PL). More intriguingly, the as-synthesized WOx MWs exhibit a strong nonlinear optical response due to the enhancement effect of the core (WOx)-shell (WSe2) nanocavity. Our work provides a feasible route for direct growth of WOx-based mixed-dimensional heterostructures, which possess potential applications in high-performance optoelectronic devices.

15.
iScience ; 26(3): 106213, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36909669

RESUMO

Heterojunction nanostructure construction and morphology engineering are considered to be effective approaches to improve photocatalytic performance. Herein, ternary hierarchical hollow structures consisting of cobalt-aluminum-layered double hydroxide (CoAl-LDH) nanoplates grown on hollow carbon nitride spheres (HCNS) and decorated with N-doped carbon quantum dots (NCQDs) were prepared using a templating method and a subsequent solvothermal process. The obtained HCNS@LDH/NCQD composites presented an improved performance in photocatalytic degradation of tetracycline and inactivation of E. coli compared with pure HCNS and LDH under visible light illumination. The enhanced photocatalytic activity of the designed photocatalyst could be attributed to the following reasons: (1) A special hollow structure provides more active sites and has multiple capabilities of light reflection by helping with a high specific surface area that improves the harvesting efficiency of solar light and (2) the strong synergistic effect among the constituents, which promotes separation and transfer of charge carriers and broadens the photo-response range.

16.
iScience ; 26(4): 106327, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968093

RESUMO

Au-DNA self-assembled nanomachines can perform intelligent tasks such as sensing biomarkers and delivery of drug molecules through rational customization and programming. By virtue of their efficient signal amplification and flexible scalability, Au-DNA nanomachines have developed into one of the most promising nanodevices. In this review, we summarize the latest progress in Au-DNA self-assembled nanomachines for biosensing applications. First, the functional modules for building Au-DNA nanomachines are introduced. Subsequently, we summarize the biosensing applications of Au-DNA nanomachines with electrochemical or fluorescent signals as the output, respectively. Finally, we discuss the challenges and potential opportunities for Au-DNA nanomachines in biomedical applications.

17.
iScience ; 26(10): 107867, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766967

RESUMO

Metal-organic frameworks (MOFs) are crystalline porous materials characterized by their high porosity and chemical tailorability. To realize the full potential of synthesized MOFs, it is important to transform them from crystalline solid powders into materials with integrated morphologies and properties. One promising approach is facet-controlled assembly, which involves arranging individual crystalline MOF particles into ordered macroscale structures by carefully controlling the interactions between particles. The resulting assembled MOF structures maintain the characteristics of individual particles while also exhibiting improved properties overall. In this article, we emphasize the essential concepts of MOF assembly, highlighting the impact of building blocks, surface interactions, and Gibbs free energy on the assembly process. We systematically examine three methods of guiding facet-controlled MOF assembly, including spontaneous assembly, assembly guided by external forces, and assembly through surface modifications. Lastly, we offer outlooks on future advancements in the fabrication of MOF-based material and potential application exploration.

18.
iScience ; 26(8): 107286, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520721

RESUMO

Certain types of face masks are highly efficient in protecting humans from bacterial and viral pathogens, and growing concerns with high safety, low cost, and wide market suitability have accelerated the replacement of reusable face masks with disposable ones during the last decades. However, wearing these masks creates countless problems associated with personnel comfort as well as more significant issues related to the cost of fabrication, the generation of medical waste, and environmental contaminants. In this work, we present a facile spray-pressing technique for the production of P-masks with a potential scale-up prospect by adding a graphene layer on one side of meltblown fabric and a functional layer on the other side. In principle, this technique could be easily integrated into the present automatic mask production process and the masks have self-cleaning and/or self-sterilizing properties when it is exposed to solar or simulated solar irradiation.

19.
iScience ; 26(7): 107067, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534139

RESUMO

Sportswear worn next to the skin is easily soaked by sweat and may become a breeding ground for the microbiome, thus a source of malodor. Malodor can cause social embarrassment and discomfort to both wearer and others. Given the risks current deodorant products pose to nature and human life, the development of sustainable textiles for odor control comes to the forefront. This review introduces the odor-generating mechanism in clothing from the perspectives of perspiration composition and cutaneous microbiome. With the knowledge of the significant role of sweat in odor formation, the sweat distribution of the human body, measurement techniques, and advanced technologies developed for quick-dry function are presented in the second part. Lastly, odor management in sportswear is evaluated, covering the odor-assessing techniques, the effects of various textile materials, and emerging solutions in terms of antibacterial treatment, adsorbent materials, and photocatalytic degradations of odorous compounds. Overall, it is of both personal and social value to develop novel textile materials with odor-control functions by making use of natural materials and fabric designs.

20.
iScience ; 26(11): 108261, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026149

RESUMO

The development and utilization of triboelectric nanogenerator (TENG) are very important for realizing energy cleaning in electrochemical processes. However, limited electrical output performance plays a major stumbling block to this process. Herein, a porous and high-roughness PDMS (PR/PDMS) negative friction layer was obtained by doping PDMS with powdered chitosan and casting using a sacrificial anodic alumina template. A TENG was fabricated by the PR/PDMS with Al film (PR-TENG). The PR-TENG exhibited much better performance than the pure PDMS-based TENG, which was attributed to the porous properties of the PR/PDMS. Under the driving of external mechanical force at 5 Hz, the PR-TENG showed a maximum output open-circuit voltage (Voc) and short-circuit current density (Jsc) of 77.1 V and 33.9 mA/m2, respectively. To prove the concept, the electrochemical cathodic protection system with PR-TENG was constructed. Ultimately, the application prospects of the PR-TENG as a clean energy source for electrochemical processes were explored and evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA