Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(1-2): 318-333.e19, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503206

RESUMO

Preeclampsia is the most frequent pregnancy-related complication worldwide with no cure. While a number of molecular features have emerged, the underlying causal mechanisms behind the disorder remain obscure. Here, we find that increased complex formation between angiotensin II AT1 and bradykinin B2, two G protein-coupled receptors with opposing effects on blood vessel constriction, triggers symptoms of preeclampsia in pregnant mice. Aberrant heteromerization of AT1-B2 led to exaggerated calcium signaling and high vascular smooth muscle mechanosensitivity, which could explain the onset of preeclampsia symptoms at late-stage pregnancy as mechanical forces increase with fetal mass. AT1-B2 receptor aggregation was inhibited by beta-arrestin-mediated downregulation. Importantly, symptoms of preeclampsia were prevented by transgenic ARRB1 expression or a small-molecule drug. Because AT1-B2 heteromerization was found to occur in human placental biopsies from pregnancies complicated by preeclampsia, specifically targeting AT1-B2 heteromerization and its downstream consequences represents a promising therapeutic approach.


Assuntos
Angiotensina II/metabolismo , Receptor B2 da Bradicinina/metabolismo , beta-Arrestina 1/metabolismo , Animais , Sinalização do Cálcio , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Oligopeptídeos , Placenta/metabolismo , Pré-Eclâmpsia/prevenção & controle , Gravidez , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , beta-Arrestina 1/genética , beta-Arrestina 1/fisiologia
2.
Annu Rev Cell Dev Biol ; 36: 61-83, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603614

RESUMO

The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.


Assuntos
Axônios/fisiologia , Química , Animais , Orientação de Axônios/fisiologia , Fenômenos Biomecânicos , Cones de Crescimento/fisiologia , Humanos , Modelos Biológicos
3.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769437

RESUMO

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Assuntos
Adesões Focais , Cinesinas , Microtúbulos , Fatores de Troca de Nucleotídeo Guanina Rho , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animais
4.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043795

RESUMO

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Assuntos
Cálcio , Canais Iônicos , Túbulos Renais Coletores , Membrana Celular , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Pirazinas/farmacologia , Tiadiazóis/farmacologia , Água/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Animais , Camundongos , Cálcio/metabolismo
5.
Pflugers Arch ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325089

RESUMO

Pancreatic stellate cells (PSCs) are central in the development of acute pancreatitis and tumor fibrosis in pancreatic ductal adenocarcinoma (PDAC). Fibrosis and a unique pH landscape represent characteristic properties of the PDAC microenvironment. Mechanosensitive ion channels are involved in the activation of PSCs. Among these channels, K2P2.1 has not yet been studied in PSCs. K2P2.1 channels are pH- and mechanosensitive. We confirmed K2P2.1 expression in PSCs by RT-qPCR and immunofluorescence. PSCs from K2P2.1+/+ and K2P2.1-/- mice were studied under conditions mimicking properties of the PDAC microenvironment (acidic extracellular pH (pHe), ambient pressure elevated by + 100 mmHg). Migration and the cell area were taken as surrogates for PSC activation and evaluated with live cell imaging. pHe-dependent changes of the membrane potential of PSCs were investigated with DiBAC4(3), a voltage-sensitive fluorescent dye. We observed a correlation between morphological activation and progressive hyperpolarization of the cells in response to changes in pHe and pressure. The effect was in part dependent on the expression of K2P2.1 channels because the membrane potential of K2P2.1+/+ PSCs was always more hyperpolarized than that of K2P2.1-/- PSCs. Cell migration velocity of K2P2.1+/+ cells decreased upon pressure application when cells were kept in an acidic medium (pHe 6.6). This was not the case in K2P2.1-/- PSCs. Taken together, our study highlights the critical role of K2P2.1 channels in the combined sensing of environmental pressure and pHe by PSCs and in coordinating cellular morphology with membrane potential dynamics. Thus, K2P2.1 channels are important mechano-sensors in murine PSCs.

6.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L150-L159, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771147

RESUMO

Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.


Assuntos
Miócitos de Músculo Liso , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Inflamassomos/metabolismo , Estresse Mecânico , Mecanotransdução Celular , Músculo Liso/metabolismo , Canais Iônicos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Cálcio/metabolismo , Células Cultivadas , Contração Muscular/fisiologia , Remodelação das Vias Aéreas/fisiologia , Proteína ORAI1/metabolismo , Proteína ORAI1/genética
7.
Rev Physiol Biochem Pharmacol ; 182: 139-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35137308

RESUMO

Survival in the circulation, extravasation from vasculature, and colonizing new tissues represent major steps of the metastatic cascade and pose a big challenge for metastasizing tumor cells. Tumor cells circulating in blood and lymph vessels need to overcome anoikis, cope with mechanical stimuli including shear stress, and defeat attacks by the immune system. Once adhered to the vessel wall, a circulating tumor cell (CTC) can trick the endothelial cells into loosening their intercellular junctions so that the endothelium becomes penetrable for the tumor cell. Since tumor cells tend to metastasize to predestinated target organs and tissues, called organotropism, the distribution of metastases is anything but random. The molecular-physiological mechanisms underlying CTC survival, extravasation, and organotropism are very likely to include the presence and activity of ion channels/transporters due to the latter's key function in cytophysiological processes. To date, a very limited number of studies explicitly show the involvement of ion transport. This review describes the contribution of ion channels and transporters to CTC survival, extravasation, and organotropism where known and possible. In addition, supposed connections between ion transport and CTC behavior are demonstrated and imply the potential to be therapeutically taken advantage of.


Assuntos
Células Neoplásicas Circulantes , Anoikis , Contagem de Células , Células Endoteliais , Humanos , Transporte de Íons , Células Neoplásicas Circulantes/patologia
8.
Small ; : e2406865, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374027

RESUMO

Myosins are ATP-powered, force-generating motor proteins involved in cardiac and muscle contraction. The external load experienced by the myosins modulates and coordinates their function in vivo. Here, this study investigates the tension-sensing mechanisms of rabbit native ß-cardiac myosin (ßM-II) and slow skeletal myosins (SolM-II) that perform in different physiological settings. Using mobile optical tweezers with a square wave-scanning mode, a range of external assisting and resisting loads from 0 to 15 pN is exerted on single myosin molecules as they interact with the actin filament. Influenced of load on specific strongly-bound states in the cross-bridge cycle is examined by adjusting the [ATP]. The results implies that the detachment kinetics of actomyosin ADP.Pi strongly-bound force-generating state are load sensitive. Low assisting load accelerates, while the resisting load hinders the actomyosin detachment, presumably, by slowing both the Pi and ADP release. However, under both high assisting and resisting load, the rate of actomyosin dissociation decelerates. The transition from actomyosin ADP.Pi to ADP state appears to occur with a higher probability for ßM-II than SolM-II. This study interpret that dissociation of at least three strongly-bound actomyosin states are load-sensitive and may contribute to functional diversity among different myosins.

9.
Biochem Soc Trans ; 52(2): 911-922, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629718

RESUMO

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Microscopia Crioeletrônica/métodos , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Moleculares , Conformação Proteica , Animais
10.
Exp Physiol ; 109(1): 135-147, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951012

RESUMO

By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Propriocepção , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Fusos Musculares/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo
11.
J Nanobiotechnology ; 22(1): 327, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858689

RESUMO

Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita , Transdução de Sinais , Humanos , Animais , Nanopartículas de Magnetita/química , Diferenciação Celular , Medicina Regenerativa/métodos , Neurônios/metabolismo , Células-Tronco/metabolismo , Neoplasias
12.
Nano Lett ; 23(23): 10719-10724, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988562

RESUMO

Organic materials are promising candidates for thermoelectric cooling and energy harvesting at room temperature. However, their electrical conductance (G) and Seebeck coefficient (S) need to be improved to make them technologically competitive. Therefore, radically new strategies need to be developed to tune their thermoelectric properties. Here, we demonstrate that G and S can be tuned mechanically in paramagnetic metallocenes, and their thermoelectric properties can be significantly enhanced by the application of mechanical forces. With a 2% junction compression, the full thermoelectric figure of merit is enhanced by more than 200 times. We demonstrate that this is because spin transport resonances in paramagnetic metallocenes are strongly sensitive to the interaction between organic ligands and the metal center, which is not the case in their diamagnetic analogue. These results open a new avenue for the development of organic thermoelectric materials for cooling future quantum computers and generating electricity from low-grade energy sources.

13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612536

RESUMO

The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress-relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation.


Assuntos
Matriz Extracelular , Progesterona , Feminino , Humanos , Epitélio , Ciclo Menstrual , Estradiol
14.
J Physiol ; 601(1): 83-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420836

RESUMO

Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.


Assuntos
Rim Policístico Autossômico Dominante , Peixe-Zebra , Animais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais Iônicos/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Mamíferos/metabolismo
15.
J Neurochem ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36840383

RESUMO

Chronic pelvic pain (CPP) is the primary symptom of endometriosis patients, but adequate treatments are lacking. Modulation of ion channels expressed by sensory nerves innervating the viscera has shown promise for the treatment of irritable bowel syndrome and overactive bladder. However, similar approaches for endometriosis-associated CPP remain underdeveloped. Here, we examined the role of the voltage-gated sodium (NaV ) channel NaV 1.7 in (i) the sensitivity of vagina-innervating sensory afferents and investigated whether (ii) NaV 1.7 inhibition reduces nociceptive signals from the vagina and (iii) ameliorates endometriosis-associated CPP. The mechanical responsiveness of vagina-innervating sensory afferents was assessed with ex vivo single-unit recording preparations. Pain evoked by vaginal distension (VD) was quantified by the visceromotor response (VMR) in vivo. In control mice, pharmacological activation of NaV 1.7 with OD1 sensitised vagina-innervating pelvic afferents to mechanical stimuli. Using a syngeneic mouse model of endometriosis, we established that endometriosis sensitised vagina-innervating pelvic afferents to mechanical stimuli. The highly selective NaV 1.7 inhibitor Tsp1a revealed that this afferent hypersensitivity occurred in a NaV 1.7-dependent manner. Moreover, in vivo intra-vaginal treatment with Tsp1a reduced the exaggerated VMRs to VD which is characteristic of mice with endometriosis. Conversely, Tsp1a did not alter ex vivo afferent mechanosensitivity nor in vivo VMRs to VD in Sham control mice. Collectively, these findings suggest that NaV 1.7 plays a crucial role in endometriosis-induced vaginal hyperalgesia. Importantly, NaV 1.7 inhibition selectively alleviated endometriosis-associated CPP without the loss of normal sensation, suggesting that selective targeting of NaV 1.7 could improve the quality of life of women with endometriosis.

16.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33712452

RESUMO

Natural killer (NK) cells can kill infected or transformed cells via a lytic immune synapse. Diseased cells may exhibit altered mechanical properties but how this impacts NK cell responsiveness is unknown. We report that human NK cells were stimulated more effectively to secrete granzymes A and B, FasL (also known as FasLG), granulysin and IFNγ, by stiff (142 kPa) compared to soft (1 kPa) planar substrates. To create surrogate spherical targets of defined stiffness, sodium alginate was used to synthesise soft (9 kPa), medium (34 kPa) or stiff (254 kPa) cell-sized beads, coated with antibodies against activating receptor NKp30 (also known as NCR3) and the integrin LFA-1 (also known as ITGAL). Against stiff beads, NK cells showed increased degranulation. Polarisation of the microtubule-organising centre and lytic granules were impaired against soft targets, which instead resulted in the formation of unstable kinapses. Thus, by varying target stiffness to characterise the mechanosensitivity of immune synapses, we identify soft targets as a blind spot in NK cell recognition. This article has an associated First Person interview with the co-first authors of the paper.


Assuntos
Células Matadoras Naturais , Centro Organizador dos Microtúbulos , Linhagem Celular , Citotoxicidade Imunológica , Humanos , Antígeno-1 Associado à Função Linfocitária , Sinapses
17.
Gastroenterology ; 162(2): 535-547.e13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688712

RESUMO

BACKGROUND AND AIMS: The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS: We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS: Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS: The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.


Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Tato/fisiologia , Animais , Células Enteroendócrinas/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Técnicas de Inativação de Genes , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Canais Iônicos/metabolismo , Mecanorreceptores , Camundongos , Camundongos Transgênicos , Optogenética , Peristaltismo/fisiologia
18.
Curr Osteoporos Rep ; 21(4): 414-425, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395891

RESUMO

PURPOSE OF REVIEW: To summarize the fundamental role of transforming growth factor beta (TGFß) signaling in osteocytes and highlight the physiological and pathophysiological conditions stemming from the deregulation of this pathway in osteocytes. RECENT FINDINGS: Osteocytes perform a myriad of skeletal and extraskeletal functions, including mechanosensing, coordinating bone remodeling, local bone matrix turnover, and maintaining systemic mineral homeostasis and global energy balance. Transforming growth factor-beta (TGFß) signaling, which is crucial for embryonic and postnatal bone development and maintenance, has been found to be essential for several osteocyte functions. There is some evidence that TGFß might be accomplishing these functions through crosstalk with the Wnt, PTH, and YAP/TAZ pathways in osteocytes, and a better understanding of this complex molecular network can help identify the pivotal convergence points responsible for distinct osteocyte functions. This review provides recent updates on the interwoven signaling cascades coordinated by TGFß signaling within osteocytes to support their skeletal and extraskeletal functions and highlights physiological and pathophysiological conditions implicating the role of TGFß signaling in osteocytes.

19.
Curr Osteoporos Rep ; 21(4): 401-413, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37273086

RESUMO

PURPOSE OF REVIEW: The goal of this review is to summarize recent findings related to modifications in osteocyte lacunar and canalicular morphology due to physiological and pathological conditions. In addition, this review aims to outline how these modifications may influence the local mechanical environment of osteocytes and their mechanosensitivity. RECENT FINDINGS: Reduction in lacunar density with age and increasing lacunar size with lactation are confirmed in multiple studies in human and murine bone. There is also evidence of a reduction in canalicular density, length, and branching, as well as increasing sphericity and smaller lacunae with aging and disease. However, while some studies have found modifications in lacunar density, size, shape, and orientation, as well as canalicular density, length, and size due to specific physiological and pathological conditions, others have not observed any differences. Recent finite element models provide insights into how observed modifications in the lacunar-canalicular network (lacunar and canalicular density) and lacunar-canalicular morphology (lacunar area/volume, shape, and orientation as well as canalicular diameter and length) may influence the fluid flow and local strains around the lacunar-canalicular network and modify the local mechanical environment of osteocytes. Modifications in the lacunar-canalicular network morphology may lead to significant changes in the strains received by osteocytes and may influence bone's response to mechanical stimulation as osteocytes are the primary mechanosensing bone cells. Further experimental and computational studies will continue to improve our understanding of the relationship between lacunar-canalicular network morphology and osteocyte mechanosensitivity.


Assuntos
Osso e Ossos , Osteócitos , Feminino , Humanos , Camundongos , Animais , Osteócitos/fisiologia , Envelhecimento , Lactação
20.
Proc Natl Acad Sci U S A ; 117(2): 848-856, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882453

RESUMO

Neuronal activity can be modulated by mechanical stimuli. To study this phenomenon quantitatively, we mechanically stimulated rat cortical neurons by shear stress and local indentation. Neurons show 2 distinct responses, classified as transient and sustained. Transient responses display fast kinetics, similar to spontaneous neuronal activity, whereas sustained responses last several minutes before returning to baseline. Local soma stimulations with micrometer-sized beads evoke transient responses at low forces of ∼220 nN and pressures of ∼5.6 kPa and sustained responses at higher forces of ∼360 nN and pressures of ∼9.2 kPa. Among the neuronal compartments, axons are highly susceptible to mechanical stimulation and predominantly show sustained responses, whereas the less susceptible dendrites predominantly respond transiently. Chemical perturbation experiments suggest that mechanically evoked responses require the influx of extracellular calcium through ion channels. We propose that subtraumatic forces/pressures applied to neurons evoke neuronal responses via nonspecific gating of ion channels.


Assuntos
Mecanotransdução Celular/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Axônios/metabolismo , Biofísica , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Estimulação Física , Pressão , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA