Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39179248

RESUMO

Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.


Assuntos
Biologia Computacional , Proteômica , Humanos , Proteômica/métodos , Biologia Computacional/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Neoplasias/imunologia , Algoritmos , Biomarcadores , Processamento de Imagem Assistida por Computador/métodos
2.
Neuropathol Appl Neurobiol ; 50(3): e12981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38738494

RESUMO

The convergence of digital pathology and artificial intelligence could assist histopathology image analysis by providing tools for rapid, automated morphological analysis. This systematic review explores the use of artificial intelligence for histopathological image analysis of digitised central nervous system (CNS) tumour slides. Comprehensive searches were conducted across EMBASE, Medline and the Cochrane Library up to June 2023 using relevant keywords. Sixty-eight suitable studies were identified and qualitatively analysed. The risk of bias was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST) criteria. All the studies were retrospective and preclinical. Gliomas were the most frequently analysed tumour type. The majority of studies used convolutional neural networks or support vector machines, and the most common goal of the model was for tumour classification and/or grading from haematoxylin and eosin-stained slides. The majority of studies were conducted when legacy World Health Organisation (WHO) classifications were in place, which at the time relied predominantly on histological (morphological) features but have since been superseded by molecular advances. Overall, there was a high risk of bias in all studies analysed. Persistent issues included inadequate transparency in reporting the number of patients and/or images within the model development and testing cohorts, absence of external validation, and insufficient recognition of batch effects in multi-institutional datasets. Based on these findings, we outline practical recommendations for future work including a framework for clinical implementation, in particular, better informing the artificial intelligence community of the needs of the neuropathologist.


Assuntos
Inteligência Artificial , Neoplasias do Sistema Nervoso Central , Humanos , Neoplasias do Sistema Nervoso Central/patologia , Processamento de Imagem Assistida por Computador/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39060373

RESUMO

PURPOSE: Generating polar map (PM) from [68Ga]Ga-DOTA-FAPI-04 PET images is challenging and inaccurate using existing automatic methods that rely on the myocardial anatomical integrity in PET images. This study aims to enhance the accuracy of PM generated from [68Ga]Ga-DOTA-FAPI-04 PET images and explore the potential value of PM in detecting reactive fibrosis after myocardial infarction and assessing its relationship with cardiac function. METHODS: We proposed a deep-learning-based method that fuses multi-modality images to compensate for the cardiac structural information lost in [68Ga]Ga-DOTA-FAPI-04 PET images and accurately generated PMs. We collected 133 pairs of [68Ga]Ga-DOTA-FAPI-04 PET/MR images from 87 ST-segment elevated myocardial infarction patients for training and evaluation purposes. Twenty-six patients were selected for longitudinal analysis, further examining the clinical value of PM-related imaging parameters. RESULTS: The quantitative comparison demonstrated that our method was comparable with the manual method and surpassed the commercially available software-PMOD in terms of accuracy in generating PMs for [68Ga]Ga-DOTA-FAPI-04 PET images. Clinical analysis revealed the effectiveness of [68Ga]Ga-DOTA-FAPI-04 PET PM in detecting reactive myocardial fibrosis. Significant correlations were demonstrated between the difference of baseline PM FAPI% and PM LGE%, and the change in cardiac function parameters (all p < 0.001), including LVESV% (r = 0.697), LVEDV% (r = 0.621) and LVEF% (r = -0.607). CONCLUSION: The [68Ga]Ga-DOTA-FAPI-04 PET PMs generated by our method are comparable to manually generated and sufficient for clinical use. The PMs generated by our method have potential value in detecting reactive fibrosis after myocardial infarction and were associated with cardiac function, suggesting the possibility of enhancing clinical diagnostic practices. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04723953). Registered 26 January 2021.

4.
BMC Med Imaging ; 24(1): 110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750436

RESUMO

Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, supplemented by conventional machine learning techniques. These approaches often lack the robustness and scalability needed for precise and automated tumor classification. The major limitations include a high degree of manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer learning in the medical imaging domain. Federated learning enables decentralized model training across multiple clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of transfer learning further bolsters the model's performance, making it adept at handling the intricate variations in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, outperforming existing methods. The overall accuracy stands at 98%, showcasing the model's efficacy in classifying various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer learning in enhancing brain tumor classification using MRI images.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos
5.
BMC Med Imaging ; 24(1): 107, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734629

RESUMO

This study addresses the critical challenge of detecting brain tumors using MRI images, a pivotal task in medical diagnostics that demands high accuracy and interpretability. While deep learning has shown remarkable success in medical image analysis, there remains a substantial need for models that are not only accurate but also interpretable to healthcare professionals. The existing methodologies, predominantly deep learning-based, often act as black boxes, providing little insight into their decision-making process. This research introduces an integrated approach using ResNet50, a deep learning model, combined with Gradient-weighted Class Activation Mapping (Grad-CAM) to offer a transparent and explainable framework for brain tumor detection. We employed a dataset of MRI images, enhanced through data augmentation, to train and validate our model. The results demonstrate a significant improvement in model performance, with a testing accuracy of 98.52% and precision-recall metrics exceeding 98%, showcasing the model's effectiveness in distinguishing tumor presence. The application of Grad-CAM provides insightful visual explanations, illustrating the model's focus areas in making predictions. This fusion of high accuracy and explainability holds profound implications for medical diagnostics, offering a pathway towards more reliable and interpretable brain tumor detection tools.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos
6.
Skin Res Technol ; 30(9): e70050, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246259

RESUMO

BACKGROUND: AI medical image analysis shows potential applications in research on premature aging and skin. The purpose of this study was to explore the mechanism of the Zuogui pill based on artificial intelligence medical image analysis on ovarian function enhancement and skin elasticity repair in rats with premature aging. MATERIALS AND METHODS: The premature aging rat model was established by using an experimental animal model. Then Zuogui pills were injected into the rats with premature aging, and the images were detected by an optical microscope. Then, through the analysis of artificial intelligence medical images, the image data is analyzed to evaluate the indicators of ovarian function. RESULTS: Through optical microscope image detection, we observed that the Zuogui pill played an active role in repairing ovarian tissue structure and increasing the number of follicles in mice, and Zuogui pill also significantly increased the level of progesterone in the blood of mice. CONCLUSION: Most of the ZGP-induced outcomes are significantly dose-dependent.


Assuntos
Senilidade Prematura , Inteligência Artificial , Medicamentos de Ervas Chinesas , Animais , Feminino , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Camundongos , Ovário/efeitos dos fármacos , Ovário/diagnóstico por imagem , Ratos Sprague-Dawley , Envelhecimento da Pele/efeitos dos fármacos , Modelos Animais de Doenças , Pele/efeitos dos fármacos , Pele/diagnóstico por imagem , Elasticidade/efeitos dos fármacos , Progesterona/sangue , Progesterona/farmacologia , Processamento de Imagem Assistida por Computador/métodos
7.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691404

RESUMO

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Assuntos
Radiologia , Radiologia/métodos , Radiologia/estatística & dados numéricos , Humanos , Processamento de Imagem Assistida por Computador/métodos
8.
BMC Med Inform Decis Mak ; 24(1): 126, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755563

RESUMO

BACKGROUND: Chest X-ray imaging based abnormality localization, essential in diagnosing various diseases, faces significant clinical challenges due to complex interpretations and the growing workload of radiologists. While recent advances in deep learning offer promising solutions, there is still a critical issue of domain inconsistency in cross-domain transfer learning, which hampers the efficiency and accuracy of diagnostic processes. This study aims to address the domain inconsistency problem and improve autonomic abnormality localization performance of heterogeneous chest X-ray image analysis, particularly in detecting abnormalities, by developing a self-supervised learning strategy called "BarlwoTwins-CXR". METHODS: We utilized two publicly available datasets: the NIH Chest X-ray Dataset and the VinDr-CXR. The BarlowTwins-CXR approach was conducted in a two-stage training process. Initially, self-supervised pre-training was performed using an adjusted Barlow Twins algorithm on the NIH dataset with a Resnet50 backbone pre-trained on ImageNet. This was followed by supervised fine-tuning on the VinDr-CXR dataset using Faster R-CNN with Feature Pyramid Network (FPN). The study employed mean Average Precision (mAP) at an Intersection over Union (IoU) of 50% and Area Under the Curve (AUC) for performance evaluation. RESULTS: Our experiments showed a significant improvement in model performance with BarlowTwins-CXR. The approach achieved a 3% increase in mAP50 accuracy compared to traditional ImageNet pre-trained models. In addition, the Ablation CAM method revealed enhanced precision in localizing chest abnormalities. The study involved 112,120 images from the NIH dataset and 18,000 images from the VinDr-CXR dataset, indicating robust training and testing samples. CONCLUSION: BarlowTwins-CXR significantly enhances the efficiency and accuracy of chest X-ray image-based abnormality localization, outperforming traditional transfer learning methods and effectively overcoming domain inconsistency in cross-domain scenarios. Our experiment results demonstrate the potential of using self-supervised learning to improve the generalizability of models in medical settings with limited amounts of heterogeneous data. This approach can be instrumental in aiding radiologists, particularly in high-workload environments, offering a promising direction for future AI-driven healthcare solutions.


Assuntos
Radiografia Torácica , Aprendizado de Máquina Supervisionado , Humanos , Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Conjuntos de Dados como Assunto
9.
BMC Med Inform Decis Mak ; 24(1): 222, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112991

RESUMO

Lung and colon cancers are leading contributors to cancer-related fatalities globally, distinguished by unique histopathological traits discernible through medical imaging. Effective classification of these cancers is critical for accurate diagnosis and treatment. This study addresses critical challenges in the diagnostic imaging of lung and colon cancers, which are among the leading causes of cancer-related deaths worldwide. Recognizing the limitations of existing diagnostic methods, which often suffer from overfitting and poor generalizability, our research introduces a novel deep learning framework that synergistically combines the Xception and MobileNet architectures. This innovative ensemble model aims to enhance feature extraction, improve model robustness, and reduce overfitting.Our methodology involves training the hybrid model on a comprehensive dataset of histopathological images, followed by validation against a balanced test set. The results demonstrate an impressive classification accuracy of 99.44%, with perfect precision and recall in identifying certain cancerous and non-cancerous tissues, marking a significant improvement over traditional approach.The practical implications of these findings are profound. By integrating Gradient-weighted Class Activation Mapping (Grad-CAM), the model offers enhanced interpretability, allowing clinicians to visualize the diagnostic reasoning process. This transparency is vital for clinical acceptance and enables more personalized, accurate treatment planning. Our study not only pushes the boundaries of medical imaging technology but also sets the stage for future research aimed at expanding these techniques to other types of cancer diagnostics.


Assuntos
Neoplasias do Colo , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/classificação , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/classificação , Inteligência Artificial
10.
Pattern Recognit ; 1512024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38559674

RESUMO

Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.

11.
J Med Syst ; 48(1): 84, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264388

RESUMO

In the rapidly evolving field of medical image analysis utilizing artificial intelligence (AI), the selection of appropriate computational models is critical for accurate diagnosis and patient care. This literature review provides a comprehensive comparison of vision transformers (ViTs) and convolutional neural networks (CNNs), the two leading techniques in the field of deep learning in medical imaging. We conducted a survey systematically. Particular attention was given to the robustness, computational efficiency, scalability, and accuracy of these models in handling complex medical datasets. The review incorporates findings from 36 studies and indicates a collective trend that transformer-based models, particularly ViTs, exhibit significant potential in diverse medical imaging tasks, showcasing superior performance when contrasted with conventional CNN models. Additionally, it is evident that pre-training is important for transformer applications. We expect this work to help researchers and practitioners select the most appropriate model for specific medical image analysis tasks, accounting for the current state of the art and future trends in the field.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Inteligência Artificial , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos
12.
J Xray Sci Technol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39269816

RESUMO

BACKGROUND: Content-based image retrieval (CBIR) systems are vital for managing the large volumes of data produced by medical imaging technologies. They enable efficient retrieval of relevant medical images from extensive databases, supporting clinical diagnosis, treatment planning, and medical research. OBJECTIVE: This study aims to enhance CBIR systems' effectiveness in medical image analysis by introducing the VisualSift Ensembling Integration with Attention Mechanisms (VEIAM). VEIAM seeks to improve diagnostic accuracy and retrieval efficiency by integrating robust feature extraction with dynamic attention mechanisms. METHODS: VEIAM combines Scale-Invariant Feature Transform (SIFT) with selective attention mechanisms to emphasize crucial regions within medical images dynamically. Implemented in Python, the model integrates seamlessly into existing medical image analysis workflows, providing a robust and accessible tool for clinicians and researchers. RESULTS: The proposed VEIAM model demonstrated an impressive accuracy of 97.34% in classifying and retrieving medical images. This performance indicates VEIAM's capability to discern subtle patterns and textures critical for accurate diagnostics. CONCLUSIONS: By merging SIFT-based feature extraction with attention processes, VEIAM offers a discriminatively powerful approach to medical image analysis. Its high accuracy and efficiency in retrieving relevant medical images make it a promising tool for enhancing diagnostic processes and supporting medical research in CBIR systems.

13.
Neuroimage ; 268: 119863, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610676

RESUMO

Domain adaptation (DA) is an important technique for modern machine learning-based medical data analysis, which aims at reducing distribution differences between different medical datasets. A proper domain adaptation method can significantly enhance the statistical power by pooling data acquired from multiple sites/centers. To this end, we have developed the Domain Adaptation Toolbox for Medical data analysis (DomainATM) - an open-source software package designed for fast facilitation and easy customization of domain adaptation methods for medical data analysis. The DomainATM is implemented in MATLAB with a user-friendly graphical interface, and it consists of a collection of popular data adaptation algorithms that have been extensively applied to medical image analysis and computer vision. With DomainATM, researchers are able to facilitate fast feature-level and image-level adaptation, visualization and performance evaluation of different adaptation methods for medical data analysis. More importantly, the DomainATM enables the users to develop and test their own adaptation methods through scripting, greatly enhancing its utility and extensibility. An overview characteristic and usage of DomainATM is presented and illustrated with three example experiments, demonstrating its effectiveness, simplicity, and flexibility. The software, source code, and manual are available online.


Assuntos
Algoritmos , Software , Humanos , Adaptação Fisiológica
14.
Annu Rev Biomed Eng ; 24: 179-201, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316609

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has imposed dramatic challenges to health-care organizations worldwide. To combat the global crisis, the use of thoracic imaging has played a major role in the diagnosis, prediction, and management of COVID-19 patients with moderate to severe symptoms or with evidence of worsening respiratory status. In response, the medical image analysis community acted quickly to develop and disseminate deep learning models and tools to meet the urgent need of managing and interpreting large amounts of COVID-19 imaging data. This review aims to not only summarize existing deep learning and medical image analysis methods but also offer in-depth discussions and recommendations for future investigations. We believe that the wide availability of high-quality, curated, and benchmarked COVID-19 imaging data sets offers the great promise of a transformative test bed to develop, validate, and disseminate novel deep learning methods in the frontiers of data science and artificial intelligence.


Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , Teste para COVID-19 , Humanos , SARS-CoV-2
15.
BMC Med Imaging ; 23(1): 162, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858043

RESUMO

BACKGROUND: The deterministic deep learning models have achieved state-of-the-art performance in various medical image analysis tasks, including nuclei segmentation from histopathology images. The deterministic models focus on improving the model prediction accuracy without assessing the confidence in the predictions. METHODS: We propose a semantic segmentation model using Bayesian representation to segment nuclei from the histopathology images and to further quantify the epistemic uncertainty. We employ Bayesian approximation with Monte-Carlo (MC) dropout during the inference time to estimate the model's prediction uncertainty. RESULTS: We evaluate the performance of the proposed approach on the PanNuke dataset, which consists of 312 visual fields from 19 organ types. We compare the nuclei segmentation accuracy of our approach with that of a fully convolutional neural network, U-Net, SegNet, and the state-of-the-art Hover-net. We use F1-score and intersection over union (IoU) as the evaluation metrics. The proposed approach achieves a mean F1-score of 0.893 ± 0.008 and an IoU value of 0.868 ± 0.003 on the test set of the PanNuke dataset. These results outperform the Hover-net, which has a mean F1-score of 0.871 ± 0.010 and an IoU value of 0.840 ± 0.032. CONCLUSIONS: The proposed approach, which incorporates Bayesian representation and Monte-Carlo dropout, demonstrates superior performance in segmenting nuclei from histopathology images compared to existing models such as U-Net, SegNet, and Hover-net. By considering the epistemic uncertainty, our model provides a more reliable estimation of the prediction confidence. These findings highlight the potential of Bayesian deep learning for improving medical image analysis tasks and can contribute to the development of more accurate and reliable computer-aided diagnostic systems.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Teorema de Bayes , Redes Neurais de Computação , Núcleo Celular
16.
Proc Natl Acad Sci U S A ; 117(23): 12592-12594, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457147

RESUMO

Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis. However, little attention is paid to the way databases are collected and how this may influence the performance of AI systems. Our study sheds light on the importance of gender balance in medical imaging datasets used to train AI systems for computer-assisted diagnosis. We provide empirical evidence supported by a large-scale study, based on three deep neural network architectures and two well-known publicly available X-ray image datasets used to diagnose various thoracic diseases under different gender imbalance conditions. We found a consistent decrease in performance for underrepresented genders when a minimum balance is not fulfilled. This raises the alarm for national agencies in charge of regulating and approving computer-assisted diagnosis systems, which should include explicit gender balance and diversity recommendations. We also establish an open problem for the academic medical image computing community which needs to be addressed by novel algorithms endowed with robustness to gender imbalance.


Assuntos
Conjuntos de Dados como Assunto/normas , Aprendizado Profundo/normas , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Radiografia Torácica/normas , Viés , Feminino , Humanos , Masculino , Padrões de Referência , Fatores Sexuais
17.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772095

RESUMO

Auxiliary clinical diagnosis has been researched to solve unevenly and insufficiently distributed clinical resources. However, auxiliary diagnosis is still dominated by human physicians, and how to make intelligent systems more involved in the diagnosis process is gradually becoming a concern. An interactive automated clinical diagnosis with a question-answering system and a question generation system can capture a patient's conditions from multiple perspectives with less physician involvement by asking different questions to drive and guide the diagnosis. This clinical diagnosis process requires diverse information to evaluate a patient from different perspectives to obtain an accurate diagnosis. Recently proposed medical question generation systems have not considered diversity. Thus, we propose a diversity learning-based visual question generation model using a multi-latent space to generate informative question sets from medical images. The proposed method generates various questions by embedding visual and language information in different latent spaces, whose diversity is trained by our newly proposed loss. We have also added control over the categories of generated questions, making the generated questions directional. Furthermore, we use a new metric named similarity to accurately evaluate the proposed model's performance. The experimental results on the Slake and VQA-RAD datasets demonstrate that the proposed method can generate questions with diverse information. Our model works with an answering model for interactive automated clinical diagnosis and generates datasets to replace the process of annotation that incurs huge labor costs.


Assuntos
Processamento de Linguagem Natural , Semântica , Humanos , Idioma
18.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139563

RESUMO

The presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods. Each of the proposed feature descriptors outputs a feature activation map in the form of a grayscale image. Acquired feature maps can be appended in a straightforward way to the original color channels of the input image and passed to the input of a convolutional neural network during the training and inference steps. An experimental evaluation is conducted to compare the classification ROC AUC of feature-extended convolutional neural network models with baseline models using regular color image inputs. The advantage of feature-extended models is demonstrated for the Resnet and VGG convolutional neural network architectures.

19.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765970

RESUMO

This paper presents a comprehensive study on the classification of brain tumor images using five pre-trained vision transformer (ViT) models, namely R50-ViT-l16, ViT-l16, ViT-l32, ViT-b16, and ViT-b32, employing a fine-tuning approach. The objective of this study is to advance the state-of-the-art in brain tumor classification by harnessing the power of these advanced models. The dataset utilized for experimentation consists of a total of 4855 images in the training set and 857 images in the testing set, encompassing four distinct tumor classes. The performance evaluation of each model is conducted through an extensive analysis encompassing precision, recall, F1-score, accuracy, and confusion matrix metrics. Among the models assessed, ViT-b32 demonstrates exceptional performance, achieving a high accuracy of 98.24% in accurately classifying brain tumor images. Notably, the obtained results outperform existing methodologies, showcasing the efficacy of the proposed approach. The contributions of this research extend beyond conventional methods, as it not only employs cutting-edge ViT models but also surpasses the performance of existing approaches for brain tumor image classification. This study not only demonstrates the potential of ViT models in medical image analysis but also provides a benchmark for future research in the field of brain tumor classification.

20.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992072

RESUMO

Thresholding is a prerequisite for many computer vision algorithms. By suppressing the background in an image, one can remove unnecessary information and shift one's focus to the object of inspection. We propose a two-stage histogram-based background suppression technique based on the chromaticity of the image pixels. The method is unsupervised, fully automated, and does not need any training or ground-truth data. The performance of the proposed method was evaluated using a printed circuit assembly (PCA) board dataset and the University of Waterloo skin cancer dataset. Accurately performing background suppression in PCA boards facilitates the inspection of digital images with small objects of interest, such as text or microcontrollers on a PCA board. The segmentation of skin cancer lesions will help doctors to automate skin cancer detection. The results showed a clear and robust background-foreground separation across various sample images under different camera or lighting conditions, which the naked implementation of existing state-of-the-art thresholding methods could not achieve.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA