Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
2.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806249

RESUMO

Melanin-concentrating hormone (MCH) acts via its sole receptor MCHR1 in rodents and is an important regulator of homeostatic behaviors like feeding, sleep, and mood to impact overall energy balance. The loss of MCH signaling by MCH or MCHR1 deletion produces hyperactive mice with increased energy expenditure, and these effects are consistently associated with a hyperdopaminergic state. We recently showed that MCH suppresses dopamine release in the nucleus accumbens, which principally receives dopaminergic projections from the ventral tegmental area (VTA), but the mechanisms underlying MCH-regulated dopamine release are not clearly defined. MCHR1 expression is widespread and includes dopaminergic VTA cells. However, as the VTA is a neurochemically diverse structure, we assessed Mchr1 gene expression at glutamatergic, GABAergic, and dopaminergic VTA cells and determined if MCH inhibited the activity of VTA cells and/or their local microcircuit. Mchr1 expression was robust in major VTA cell types, including most dopaminergic (78%) or glutamatergic cells (52%) and some GABAergic cells (38%). Interestingly, MCH directly inhibited dopaminergic and GABAergic cells but did not regulate the activity of glutamatergic cells. Rather, MCH produced a delayed increase in excitatory input to dopamine cells and a corresponding decrease in GABAergic input to glutamatergic VTA cells. Our findings suggested that MCH may acutely suppress dopamine release while disinhibiting local glutamatergic signaling to restore dopamine levels. This indicated that the VTA is a target of MCH action, which may provide bidirectional regulation of energy balance.


Assuntos
Neurônios Dopaminérgicos , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Área Tegmentar Ventral , Animais , Masculino , Camundongos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/genética , Melaninas/metabolismo , Melaninas/genética , Camundongos Endogâmicos C57BL , Hormônios Hipofisários/metabolismo , Hormônios Hipofisários/genética , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Área Tegmentar Ventral/metabolismo
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38061699

RESUMO

Abnormal processes of learning from prediction errors, i.e. the discrepancies between expectations and outcomes, are thought to underlie motivational impairments in schizophrenia. Although dopaminergic abnormalities in the mesocorticolimbic reward circuit have been found in patients with schizophrenia, the pathway through which prediction error signals are processed in schizophrenia has yet to be elucidated. To determine the neural correlates of prediction error processing in schizophrenia, we conducted a meta-analysis of whole-brain neuroimaging studies that investigated prediction error signal processing in schizophrenia patients and healthy controls. A total of 14 studies (324 schizophrenia patients and 348 healthy controls) using the reinforcement learning paradigm were included. Our meta-analysis showed that, relative to healthy controls, schizophrenia patients showed increased activity in the precentral gyrus and middle frontal gyrus and reduced activity in the mesolimbic circuit, including the striatum, thalamus, amygdala, hippocampus, anterior cingulate cortex, insula, superior temporal gyrus, and cerebellum, when processing prediction errors. We also found hyperactivity in frontal areas and hypoactivity in mesolimbic areas when encoding prediction error signals in schizophrenia patients, potentially indicating abnormal dopamine signaling of reward prediction error and suggesting failure to represent the value of alternative responses during prediction error learning and decision making.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Reforço Psicológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Recompensa , Dopamina/metabolismo
4.
Annu Rev Psychol ; 75: 1-32, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788571

RESUMO

Motivational processes are complex and multifaceted, with both directional and activational aspects. Behavioral activation and exertion of effort are functions that enable organisms to overcome obstacles separating them from significant outcomes. In a complex environment, organisms make cost/benefit decisions, assessing work-related response costs and reinforcer preference. Animal studies have challenged the general idea that dopamine (DA) is best viewed as the reward transmitter and instead have illustrated the involvement of DA in activational and effort-related processes. Mesocorticolimbic DA is a key component of the effort-related motivational circuitry that includes multiple neurotransmitters and brain areas. Human studies have identified brain areas and transmitter systems involved in effort-based decision making and characterized the reduced selection of high-effort activities associated with motivational symptoms of depression and schizophrenia. Animal and human research on the neurochemistry of behavioral activation and effort-related processes makes an important conceptual contribution by illustrating the dissociable nature of distinct aspects of motivation.


Assuntos
Dopamina , Esforço Físico , Animais , Humanos , Motivação , Recompensa , Tomada de Decisões/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39417891

RESUMO

Reward system dysfunction is implicated in the pathogenesis of major psychiatric disorders. We conducted a genome-wide association study (GWAS) to identify genes that influence activation strength of brain regions within the extended reward system in humans. A homogeneous sample of 214 participants was genotyped and underwent functional magnetic resonance imaging (fMRI). All subjects performed the 'desire-reason dilemma' (DRD) paradigm allowing systematic investigation of systems-level mechanisms of reward processing in humans. As a main finding, we identified the single nucleotide variant rs113408797 in the DnaJ Heat Shock Protein Family Member C13 gene [DNAJC13], alias Receptor-Mediated Endocytosis 8 [RME-8], that was associated with the activation strength of the ventral tegmental area (VTA; p = 2.50E-07) and the nucleus accumbens (NAcc; p = 5.31E-05) in response to conditioned reward stimuli. Moreover, haplotype analysis assessing the information across the entire DNAJC13 locus demonstrated an impact of a five-marker haplotype on VTA activation (p = 3.21E-07), which further corroborates a link between this gene and reward processing. The present findings provide first direct empirical evidence that genetic variation of DNAJC13 influences neural responses within the extended reward system to conditioned stimuli. Further studies are required to investigate the role of this gene in the pathogenesis and pathophysiology of neuropsychiatric disorders.

6.
J Neurosci ; 42(33): 6424-6434, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35790398

RESUMO

Reward motivation enhances memory through interactions between mesolimbic, hippocampal, and cortical systems, both during and after encoding. Developmental changes in these distributed neural circuits may lead to age-related differences in reward-motivated memory and the underlying neural mechanisms. Converging evidence from cross-species studies suggests that subcortical dopamine signaling is increased during adolescence, which may lead to stronger memory representations of rewarding, relative to mundane, events and changes in the contributions of underlying subcortical and cortical brain mechanisms across age. Here, we used fMRI to examine how reward motivation influences the "online" encoding and "offline" postencoding brain mechanisms that support long-term associative memory from childhood to adulthood in human participants of both sexes. We found that reward motivation led to both age-invariant enhancements and nonlinear age-related differences in associative memory after 24 h. Furthermore, reward-related memory benefits were linked to age-varying neural mechanisms. During encoding, interactions between the prefrontal cortex (PFC) and ventral tegmental area (VTA) were associated with better high-reward memory to a greater degree with increasing age. Preencoding to postencoding changes in functional connectivity between the anterior hippocampus and VTA were also associated with better high-reward memory, but more so at younger ages. Our findings suggest that there may be developmental differences in the contributions of offline subcortical and online cortical brain mechanisms supporting reward-motivated memory.SIGNIFICANCE STATEMENT A substantial body of research has examined the neural mechanisms through which reward influences memory formation in adults. However, despite extensive evidence that both reward processing and associative memory undergo dynamic change across development, few studies have examined age-related changes in these processes. We found both age-invariant and nonlinear age-related differences in reward-motivated memory. Moreover, our findings point to developmental differences in the processes through which reward modulates the prioritization of information in long-term memory, with greater early reliance on offline subcortical consolidation mechanisms and increased contribution of systems-level online encoding circuitry with increasing age. These results highlight dynamic developmental changes in the cognitive and neural mechanisms through which motivationally salient information is prioritized in memory from childhood to adulthood.


Assuntos
Recompensa , Área Tegmentar Ventral , Adolescente , Adulto , Mapeamento Encefálico , Criança , Feminino , Hipocampo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Motivação , Área Tegmentar Ventral/diagnóstico por imagem , Adulto Jovem
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834747

RESUMO

Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Consumo de Bebidas Alcoólicas , Metilação de DNA , Etanol , Fator 2 de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
8.
Psychiatr Danub ; 35(2): 174-179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480304

RESUMO

INTRODUCTION: Pain is one of the basic defense responses of living organisms. Although the threshold for pain perception varies from person to person, there is no doubt that pain reduces a person's quality of life. Assessing the subjective experience of pain is especially important in the treatment of patients with schizophrenia. In light of recent advances in neuroscience, we discuss pain thresholds in patients with schizophrenia. METHODS: A narrative review of pain thresholds in patients with schizophrenia was conducted. We electronically searched the PubMed and Google Scholar databases for articles in English with "pain," "schizophrenia," "neural circuits," and "neurotransmitters" in the title or abstract, for the period January 2000 through June 2022. RESULTS: A seemingly contradictory phenomenon has been noted with regard to pain thresholds in patients with schizophrenia. One phenomenon is a high pain threshold for nociceptive stimuli, and the other is a low pain threshold in chronic pain. As a result, a pain threshold paradox has been observed. CONCLUSIONS: Many schizophrenia patients appear to have an excess of dopamine in the mesolimbic system, which stimulates both the descending pain inhibitory pathway and the salience network. As a result, a pain threshold paradox has been observed, in which the threshold for acute nociceptive pain is high and the threshold for chronic pain is low.


Assuntos
Dor Crônica , Esquizofrenia , Humanos , Limiar da Dor , Qualidade de Vida , Percepção da Dor
9.
Eur J Neurosci ; 55(9-10): 2154-2169, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32594591

RESUMO

Evidence from both human and animal studies demonstrates the importance of social stress in the development of addiction-related behaviour. In rats, intermittent social defeat stress causes long-lasting psychostimulant cross-sensitization. Our recent data reveal heightened expression of AMPA receptor (AMPAR) GluA1 subunit in rat ventral tegmental area (VTA), which occurs concurrently with social stress-induced amphetamine (AMPH) cross-sensitization. In addition, social stress in rats induced social avoidance behaviour. The present study evaluated the effects of intermittent social defeat stress on GluA1 expression in VTA dopamine (DA) neurons, then utilized Cre-dependent virus-mediated gene transfer to determine the functional role of homomeric GluA1-AMPARs in these neurons. Social defeat stress exposure induced GluA1 expression in VTA DA neurons, as demonstrated by a greater density of GluA1/tyrosine hydroxylase (TH) double-labelling in VTA neurons in stressed rats. Additionally, functional inactivation of VTA GluA1 AMPARs in DA neurons prevented stress-induced cross-sensitization, or augmented locomotor response to low dose AMPH challenge (1.0 mg/kg, i.p.), but had no effect on social stress-induced social avoidance behaviour. Furthermore, wild-type overexpression of GluA1 in VTA DA neurons had the opposite effect; locomotor-activating effects of AMPH were significantly augmented, even in the absence of stress. Taken together, these results suggest that stress-induced GluA1 expression in VTA DA neurons is necessary for psychostimulant cross-sensitization, but not for social avoidance. This differential effect suggests that different neural pathways are implicated in these behaviours. These findings could lead to novel pharmacotherapies to help prevent stress-induced susceptibility to substance abuse.


Assuntos
Estimulantes do Sistema Nervoso Central , Neurônios Dopaminérgicos , Receptores de AMPA , Derrota Social , Área Tegmentar Ventral , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ratos , Receptores de AMPA/metabolismo , Estresse Psicológico , Área Tegmentar Ventral/metabolismo
10.
Handb Exp Pharmacol ; 271: 315-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33547588

RESUMO

Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.


Assuntos
Dor Crônica , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides , Dor Crônica/tratamento farmacológico , Humanos , Receptores Opioides kappa , Transdução de Sinais
11.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613829

RESUMO

Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.


Assuntos
Alcoolismo , Transtornos de Estresse Pós-Traumáticos , Animais , Alcoolismo/complicações , Alcoolismo/epidemiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Comorbidade , Ansiedade , Modelos Animais
12.
J Neurosci ; 40(2): 382-394, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31694965

RESUMO

Expectation interacting with nociceptive input can shape the perception of pain. It has been suggested that reward-related expectations are associated with the activation of the ventral tegmental area (VTA), which projects to the striatum (e.g., nucleus accumbens [NAc]) and prefrontal cortex (e.g., rostral anterior cingulate cortex [rACC]). However, the role of these projection pathways in encoding expectancy effects on pain remains unclear. In this study, we leveraged a visual cue conditioning paradigm with a long pain anticipation period and collected magnetic resonance imaging (MRI) data from 30 healthy human subjects (14 females). At the within-subject level, whole-brain functional connectivity (FC) analyses showed that the mesocortical pathway (VTA-rACC FC) and the mesolimbic pathway (VTA-NAc FC) were enhanced with positive expectation but inhibited with negative expectation during pain anticipation period. Mediation analyses revealed that cue-based expectancy effects on pain were mainly mediated by the VTA-NAc FC, and structural equation modeling showed that VTA-based FC influenced pain perception by modulating pain-evoked brain responses. At the between-subject level, multivariate pattern analyses demonstrated that gray matter volumes in the VTA, NAc, and rACC were able to predict the magnitudes of conditioned pain responses associated with positive and/or negative expectations across subjects. Our results therefore advance the current understanding of how the reward system is linked to the interaction between expectation and pain. Furthermore, they provide precise functional and structural information on mesocorticolimibic pathways that encode within-subject and between-subject variability of expectancy effects on pain.SIGNIFICANCE STATEMENT Studies have suggested that reward-related expectation is associated with the activation of the VTA, which projects to the striatum and prefrontal cortex. However, the role of these projection pathways in encoding expectancy effects on pain remains unclear. Using multimodality MRI and a visual cue conditioning paradigm, we found that the functional connectivity and gray matter volumes in key regions (the VTA, NAc, and rostral ACC) within the mesocorticolimbic pathways encoded expectancy effects on pain. Our results advance the current understanding of how the reward system is linked to the interaction between expectation and pain, and provide precise functional and structural information on mesocorticolimbic pathways that encode expectancy effects on pain.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Vias Neurais/fisiologia , Percepção da Dor/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Recompensa , Adulto Jovem
13.
J Neurosci ; 40(24): 4727-4738, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32354856

RESUMO

Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.


Assuntos
Comportamento Consumatório/fisiologia , Ingestão de Alimentos/fisiologia , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Condicionamento Operante/fisiologia , Masculino , Camundongos , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Optogenética , Recompensa
14.
Neurobiol Dis ; 156: 105404, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044146

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established therapeutic principle in Parkinson's disease, but the underlying mechanisms, particularly mediating non-motor actions, remain largely enigmatic. OBJECTIVE/HYPOTHESIS: The delayed onset of neuropsychiatric actions in conjunction with first experimental evidence that STN-DBS causes disease-modifying effects prompted our investigation on how cellular plasticity in midbrain dopaminergic systems is affected by STN-DBS. METHODS: We applied unilateral or bilateral STN-DBS in two independent cohorts of 6-hydroxydopamine hemiparkinsonian rats four to eight weeks after dopaminergic lesioning to allow for the development of a stable dopaminergic dysfunction prior to DBS electrode implantation. RESULTS: After 5 weeks of STN-DBS, stimulated animals had significantly more TH+ dopaminergic neurons and fibres in both the nigrostriatal and the mesolimbic systems compared to sham controls with large effect sizes of gHedges = 1.9-3.4. DBS of the entopeduncular nucleus as the homologue of the human Globus pallidus internus did not alter the dopaminergic systems. STN-DBS effects on mesolimbic dopaminergic neurons were largely confirmed in an independent animal cohort with unilateral STN stimulation for 6 weeks or for 3 weeks followed by a 3 weeks washout period. The latter subgroup even demonstrated persistent mesolimbic dopaminergic plasticity after washout. Pilot behavioural testing showed that augmentative dopaminergic effects on the mesolimbic system by STN-DBS might translate into improvement of sensorimotor neglect. CONCLUSIONS: Our data support sustained neurorestorative effects of STN-DBS not only in the nigrostriatal but also in the mesolimbic system as a potential factor mediating long-latency neuropsychiatric effects of STN-DBS in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda/métodos , Neurônios Dopaminérgicos/metabolismo , Sistema Límbico/metabolismo , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Corpo Estriado/metabolismo , Feminino , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Ratos , Ratos Wistar , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Annu Rev Pharmacol Toxicol ; 58: 547-566, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28977763

RESUMO

Stress and tobacco smoking are risk factors for alcoholism, but the underlying neural mechanisms are not well understood. Although stress, nicotine, and alcohol have broad, individual effects in the brain, some of their actions converge onto the same mechanisms and circuits. Stress and nicotine augment alcohol-related behaviors, in part via modulation of alcohol-evoked neuronal plasticity and metaplasticity mechanisms. Stress modulates alcohol-evoked plasticity via the release of signaling molecules that influence synaptic transmission. Nicotine also activates some of the same signaling molecules, cells, and circuits, producing a convergence of both stress and nicotine onto common plasticity mechanisms that influence alcohol self-administration. We describe several forms of alcohol-induced plasticity, including classic Hebbian plasticity at glutamatergic synapses, and we highlight less appreciated forms, such as non-Hebbian and GABAergic synaptic plasticity. Risk factors such as stress and nicotine initiate lasting neural changes that modify subsequent alcohol-induced synaptic plasticity and increase the vulnerability to alcohol addiction.


Assuntos
Etanol/efeitos adversos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Nicotina/efeitos adversos , Estresse Fisiológico/fisiologia , Fumar Tabaco/efeitos adversos , Alcoolismo/fisiopatologia , Animais , Humanos , Estresse Fisiológico/efeitos dos fármacos
16.
Horm Behav ; 127: 104885, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166561

RESUMO

Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Encéfalo/metabolismo , Calcitonina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Neuropeptídeos/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Dopaminérgicos/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
17.
Adv Exp Med Biol ; 1344: 57-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34773226

RESUMO

Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Relógios Biológicos , Dopamina , Humanos , Recompensa
18.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769164

RESUMO

Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone-sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II-sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen-activated protein kinase (MAPK) and inositol 1,4,5-thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation.


Assuntos
Apetite , Receptores de Angiotensina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Sódio na Dieta/metabolismo , Angiotensina II/metabolismo , Animais , Humanos
19.
J Neurochem ; 152(5): 556-569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721205

RESUMO

Alcohol use disorder most commonly presents as a polydrug disorder where greater than 85% are estimated to smoke. EtOH and nicotine (NIC) co-abuse or exposure results in unique neuroadaptations that are linked to behaviors that promote drug use. The current experiments aimed to identify neuroadaptations within the mesolimbic pathway produced by concurrent EtOH and NIC exposure. The experiments used four overall groups of male Wistar rats consisting of vehicle, EtOH or NIC alone, and EtOH+NIC. Drug exposure through direct infusion into the posterior ventral tegmental area (pVTA) stimulated release of glutamate and dopamine in the nucleus accumbens (NAc) shell, which was quantified through high-performance liquid chromatography. Additionally, brain-derived neurotrophic factor (BDNF) protein levels were measured via enzyme-linked immunosorbent assay (ELISA). A second experiment investigated the effects of drug pretreatment within the pVTA on the reinforcing properties of EtOH within the NAc shell through intracranial self-administration (ICSA). The concluding experiment evaluated the effect of NAc shell pretreatment with BDNF on EtOH reward utilizing ICSA within that region. The data indicated that only EtOH+NIC administration into the pVTA simultaneously increased glutamate, dopamine, and BDNF in the NAc shell. Moreover, only pVTA pretreatment with EtOH+NIC enhanced the reinforcing properties of EtOH in the NAc shell. BDNF pretreatment in the NAc shell was also sufficient to enhance the reinforcing properties of EtOH in the NAc shell. The collected data suggest that concurrent EtOH+NIC exposure results in a distinct neurochemical response and neuroadaptations within the mesolimbic pathway that alter EtOH reward.


Assuntos
Alcoolismo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Etanol/administração & dosagem , Nicotina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Recompensa , Uso de Tabaco
20.
Mol Biol Rep ; 47(12): 9689-9697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170427

RESUMO

Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their projections to the mesolimbic dopaminergic (DAergic) system including ventral tegmental area and nucleus accumbens (NAc), where orexin receptors are expressed. NAc plays a central role in reward-seeking behavior and drug abuse. NAc-neurons express dopamine-1 (D1R) and dopamine-2 (D2R) receptors. Orexins bind to their two cognate G-protein-coupled receptors, orexin-receptor type-1 (Orx1R) and type-2 (Orx2R). Orexin receptor signaling is involved in behaviors such as motivation and addiction. Orexin-containing neurons modulate DAergic activity that is key in synaptic plasticity induced by addictive drugs. However, the effect of OrxA on expression and content of DAergic receptors in NAc is unknown. The purpose of this study was to investigate whether OrxA can alter gene expression and protein levels of D1R/D2R in NAc. Gene expression was evaluated by real-time PCR analysis and protein levels by western blot in rats. The results show that intracerebroventricular (i.c.v.) injection of OrxA increases both gene transcription and protein content of D2R but fails to modify D1R. This effect was also confirmed with OrxA infusion in NAc/Shell. Our results demonstrate for the first time that OrxA induces up-regulation of gene and protein of D2R in NAc. These findings support the hypothesis that OrxA modulates the DAergic transmission and this may serve to understand how orexin signaling enhances DA responses at baseline conditions and in response to psychostimulants.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Orexinas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Injeções Intraventriculares , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Orexinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA