Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 91: 89-106, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35320684

RESUMO

Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons.


Assuntos
Mitocôndrias , Purinas , Animais , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Purinas/metabolismo
2.
Mol Cell ; 83(22): 4123-4140.e12, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37848033

RESUMO

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.


Assuntos
Ligases , Melanoma , Humanos , Células HeLa , Ubiquitinação , Ubiquitinas
3.
Mol Cell ; 82(3): 542-554.e6, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081364

RESUMO

Non-covalent complexes of glycolytic enzymes, called metabolons, were postulated in the 1970s, but the concept has been controversial. Here we show that a c-Myc-responsive long noncoding RNA (lncRNA) that we call glycoLINC (gLINC) acts as a backbone for metabolon formation between all four glycolytic payoff phase enzymes (PGK1, PGAM1, ENO1, and PKM2) along with lactate dehydrogenase A (LDHA). The gLINC metabolon enhances glycolytic flux, increases ATP production, and enables cell survival under serine deprivation. Furthermore, gLINC overexpression in cancer cells promotes xenograft growth in mice fed a diet deprived of serine, suggesting that cancer cells employ gLINC during metabolic reprogramming. We propose that gLINC makes a functional contribution to cancer cell adaptation and provide the first example of a lncRNA-facilitated metabolon.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicólise , Proteínas de Membrana/metabolismo , Neoplasias/enzimologia , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/metabolismo , RNA Longo não Codificante/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Complexos Multienzimáticos , Neoplasias/genética , Neoplasias/patologia , Fosfoglicerato Quinase/genética , Fosfoglicerato Mutase/genética , Fosfopiruvato Hidratase/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Serina/deficiência , Hormônios Tireóideos/genética , Carga Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas de Ligação a Hormônio da Tireoide
4.
Mol Cell ; 81(18): 3775-3785, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547238

RESUMO

With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.


Assuntos
Redes e Vias Metabólicas/fisiologia , Metabolismo/fisiologia , Metaboloma/fisiologia , Animais , Humanos , Complexos Multienzimáticos/metabolismo , Mapas de Interação de Proteínas/fisiologia , Purinas/metabolismo
5.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547241

RESUMO

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Assuntos
Senescência Celular/fisiologia , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Citosol , Glucose/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , NAD/fisiologia , Oxirredução , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
6.
Plant J ; 118(6): 1793-1814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461478

RESUMO

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.


Assuntos
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biossíntese , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Folhas de Planta/metabolismo , Hidroxilação , Retículo Endoplasmático/metabolismo
7.
EMBO J ; 40(17): e108083, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34254350

RESUMO

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


Assuntos
Proteínas Fúngicas/biossíntese , Mitocôndrias/metabolismo , Fitocromo/biossíntese , Alternaria , Proteínas Fúngicas/genética , Heme/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fitocromo/genética , Transporte Proteico
8.
Am J Hum Genet ; 109(6): 1038-1054, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35568032

RESUMO

Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.


Assuntos
Exoma , Exoma/genética , Frequência do Gene/genética , Humanos , Estudos Prospectivos , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma
9.
Cell Mol Life Sci ; 81(1): 97, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372750

RESUMO

Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.


Assuntos
Aprendizagem , Transdução de Sinais , Cromatina , NF-kappa B
10.
Nano Lett ; 24(30): 9237-9244, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39017718

RESUMO

Self-assembled protein cages are attractive scaffolds for organizing various proteins of interest (POIs) toward applications in synthetic biology and medical science. However, specifically attaching multiple POIs to a single protein cage remains challenging, resulting in diversity among the functionalized particles. Here, we present the engineering of a self-assembled protein cage, DTMi3ST, capable of independently recruiting two different POIs using SpyCatcher (SC)/SpyTag (ST) and DogCatcher (DC)/DogTag (DT) chemistries, thereby reducing variability between assemblies. Using fluorescent proteins as models, we demonstrate controlled targeting of two different POIs onto DTMi3ST protein cages both in vitro and inside living cells. Furthermore, dual functionalization of the DTMi3ST protein cage with a membrane-targeting peptide and ß-galactosidase resulted in the construction of membrane-bound enzyme assemblies in Escherichia coli, leading to a 69.6% enhancement in substrate utilization across the membrane. This versatile protein cage platform provides dual functional nanotools for biological and biomedical applications.


Assuntos
Escherichia coli , Engenharia de Proteínas , Escherichia coli/genética , Peptídeos/química , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Humanos
11.
J Biol Chem ; 299(9): 105103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507013

RESUMO

The hydrolysis of ATP is the primary source of metabolic energy for eukaryotic cells. Under physiological conditions, cells generally produce more than sufficient levels of ATP to fuel the active biological processes necessary to maintain homeostasis. However, mechanisms underpinning the distribution of ATP to subcellular microenvironments with high local demand remain poorly understood. Intracellular distribution of ATP in normal physiological conditions has been proposed to rely on passive diffusion across concentration gradients generated by ATP producing systems such as the mitochondria and the glycolytic pathway. However, subcellular microenvironments can develop with ATP deficiency due to increases in local ATP consumption. Alternatively, ATP production can be reduced during bioenergetic stress during hypoxia. Mammalian cells therefore need to have the capacity to alter their metabolism and energy distribution strategies to compensate for local ATP deficits while also controlling ATP production. It is highly likely that satisfying the bioenergetic requirements of the cell involves the regulated distribution of ATP producing systems to areas of high ATP demand within the cell. Recently, the distribution (both spatially and temporally) of ATP-producing systems has become an area of intense investigation. Here, we review what is known (and unknown) about intracellular energy production and distribution and explore potential mechanisms through which this targeted distribution can be altered in hypoxia, with the aim of stimulating investigation in this important, yet poorly understood field of research.


Assuntos
Hipóxia Celular , Metabolismo Energético , Animais , Humanos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Hipóxia Celular/fisiologia , Adaptação Fisiológica
12.
Plant J ; 115(3): 820-832, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118879

RESUMO

Ammonium in the soil is converted into nitrate by nitrifying bacteria or archaea. While nitrate is readily available for plants, it is prone to leaching and contributes to eutrophication. In addition, when the soil conditions become anaerobic, nitrate can be reduced to nitrous oxide, a powerful greenhouse gas. Therefore, slowing nitrification in agricultural soil offers some benefits by reducing nitrogen loss and decreasing water and air pollution. Since nitrogen is a limiting nutrient for most ecological niches, many plants have evolved specialized compounds that reduce nitrification. One such compound, sorgoleone, which is secreted from the root hair of sorghum, has been relatively well studied due to its allelopathic function, with most enzymes involved in its biosynthesis elucidated. However, the secretion mechanisms remain unknown. Previous studies reported numerous lipidic vesicles in the sorghum root hair and speculated that they are involved in sorgoleone storage or secretion, but their roles remain unclear. Also, the subcellular organelles that are involved in sorgoleone synthesis have not been identified. In the present study, we found that the expression of sorgoleone biosynthesis enzymes is induced in a specific root zone, indicating that the secretion is developmentally regulated. The accumulation of internal vesicles preceded the peak of sorgoleone biosynthesis and secretion, indicating that the vesicles play a role in precursor storage rather than secretion. Moreover, our data suggest that enzymes that catalyze the first three steps, SbDES2, SbDES3, and SbARS1, interact with each other to form a multi-enzyme complex on the endoplasmic reticulum surface.


Assuntos
Nitratos , Sorghum , Nitratos/metabolismo , Lipídeos , Benzoquinonas/metabolismo , Solo , Sorghum/metabolismo
13.
Plant J ; 114(5): 1080-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906885

RESUMO

Metabolons are temporary structural-functional complexes of sequential enzymes of a metabolic pathway that are distinct from stable multi-enzyme complexes. Here we provide a brief history of the study of enzyme-enzyme assemblies with a particular focus on those that mediate substrate channeling in plants. Large numbers of protein complexes have been proposed for both primary and secondary metabolic pathways in plants. However, to date only four substrate channels have been demonstrated. We provide an overview of current knowledge concerning these four metabolons and explain the methodologies that are currently being applied to unravel their functions. Although the assembly of metabolons has been documented to arise through diverse mechanisms, the physical interaction within the characterized plant metabolons all appear to be driven by interaction with structural elements of the cell. We therefore pose the question as to what methodologies could be brought to bear to enhance our knowledge of plant metabolons that assemble via different mechanisms? In addressing this question, we review recent findings in non-plant systems concerning liquid droplet phase separation and enzyme chemotaxis and propose strategies via which such metabolons could be identified in plants. We additionally discuss the possibilities that could be opened up by novel approaches based on: (i) subcellular-level mass spectral imaging, (ii) proteomics, and (iii) emergent methods in structural and computational biology.


Assuntos
Redes e Vias Metabólicas , Plantas
14.
Plant J ; 114(4): 965-983, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919339

RESUMO

Both stable and transient protein interactions play an important role in the complex assemblies required for the proper functioning of living cells. Several methods have been developed to monitor protein-protein interactions in plants. However, the detection of dynamic protein complexes is very challenging, with few technologies available for this purpose. Here, we developed a new platform using the plant UBIQUITIN promoter to drive transgene expression and thereby to detect protein interactions in planta. Typically, to decide which side of the protein to link the tags, the subcellular localization of the protein fused either N-terminal or C-terminal mCitrine was firstly confirmed by using eight different specific mCherry markers. Following stable or transient protein expression in plants, the protein interaction network was detected by affinity purification mass spectrometry. These interactions were subsequently confirmed by bimolecular fluorescence complementation (BiFC), bioluminescence resonance energy transfer and co-immunoprecipitation assays. The dynamics of these interactions were monitored by Förster resonance energy transfer (FRET) and split-nano luciferase, whilst the ternary protein complex association was monitored by BiFC-FRET. Using the canonical glycolytic metabolon as an example, the interaction between these enzymes was characterized under conditions that mimic physiologically relevant energy statuses.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Ligação Proteica
15.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792967

RESUMO

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Assuntos
Arabidopsis , Infertilidade , Zea mays/genética , Zea mays/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Simulação de Acoplamento Molecular , Pironas/metabolismo , Melhoramento Vegetal , Arabidopsis/genética , Lipídeos , Pólen/genética , Pólen/metabolismo , Infertilidade/genética , Infertilidade/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Gynecol Oncol ; 191: 116-123, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39388742

RESUMO

OBJECTIVE: Interventions that combat obesity and its associated metabolic perturbations may decrease incidence and improve outcomes of endometrial cancer (EC). Potential options for weight loss include pharmacotherapeutic interventions such as tirzepatide, a dual-acting glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) receptor agonist. Given this, we explored the anti-obesity and anti-tumorigenic effects of tirzepatide in our pre-clinical mouse model of endometrioid EC. METHODS: Starting at 4 weeks of age, Lkb1fl/flp53fl/fl mice were fed a low-fat diet vs a high-fat diet to generate a lean or obese phenotype. Nine weeks after induction of EC, obese and lean mice were randomized to receive tirzepatide for 4 weeks. Body and tumor weights, tumor transcriptomic and metabolomic profiles, and serum metabolic markers and chemokines were assessed. RESULTS: Both obese and lean mice began to lose body weight after 2 weeks of tirzepatide treatment, ultimately achieving a significant weight loss of 20.1 % in obese mice and 16.8 % in lean mice. Tirzepatide improved obesity-induced serum adiponectin, leptin, GIP, and C-reactive protein levels. Furthermore, tirzepatide relative to vehicle, effectively reduced tumor growth in obese and lean mice, inhibited the ErbB signaling and glycolysis/gluconeogenesis in tumors of obese mice, and increased O-linked glycosylation biosynthesis and phospholipase D signaling in tumors of lean mice. CONCLUSION: Tirzepatide decreased both mouse weight and tumor growth via effects on metabolic and immune pathways in the EC tumors that differed between obese and lean mice. This novel weight loss treatment deserves further evaluation as an innovative strategy in the management of EC.

17.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891840

RESUMO

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Assuntos
Aciltransferases , Liases Intramoleculares , Liases Intramoleculares/metabolismo , Liases Intramoleculares/química , Aciltransferases/metabolismo , Aciltransferases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidade por Substrato , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica
18.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201753

RESUMO

An application of CO2/HCO3--free solution (Zero-CO2) did not increase intracellular pH (pHi) in ciliated human nasal epithelial cells (c-hNECs), leading to no increase in frequency (CBF) or amplitude (CBA) of the ciliary beating. This study demonstrated that the pHi of c-hNECs expressing carbonic anhydrase IV (CAIV) is high (7.64), while the pHi of ciliated human bronchial epithelial cells (c-hBECs) expressing no CAIV is low (7.10). An extremely high pHi of c-hNECs caused pHi, CBF and CBA to decrease upon Zero-CO2 application, while a low pHi of c-hBECs caused them to increase. An extremely high pHi was generated by a high rate of HCO3- influx via interactions between CAIV and Na+/HCO3- cotransport (NBC) in c-hNECs. An NBC inhibitor (S0859) decreased pHi, CBF and CBA and increased CBF and CBA in c-hNECs upon Zero-CO2 application. In conclusion, the interactions of CAIV and NBC maximize HCO3- influx to increase pHi in c-hNECs. This novel mechanism causes pHi to decrease, leading to no increase in CBF and CBA in c-hNECs upon Zero-CO2 application, and appears to play a crucial role in maintaining pHi, CBF and CBA in c-hNECs periodically exposed to air (0.04% CO2) with respiration.


Assuntos
Bicarbonatos , Dióxido de Carbono , Anidrase Carbônica IV , Cílios , Células Epiteliais , Mucosa Nasal , Humanos , Concentração de Íons de Hidrogênio , Dióxido de Carbono/metabolismo , Cílios/metabolismo , Bicarbonatos/metabolismo , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/citologia , Anidrase Carbônica IV/metabolismo , Anidrase Carbônica IV/genética , Células Cultivadas , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética
19.
Crit Rev Biochem Mol Biol ; 56(1): 1-16, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179964

RESUMO

The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Purinas/biossíntese , Transdução de Sinais/fisiologia , Monofosfato de Adenosina/metabolismo , Vias Biossintéticas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Fosforribosil Pirofosfato/metabolismo , Fosforilação
20.
Semin Cancer Biol ; 86(Pt 3): 899-913, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34998944

RESUMO

The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/uso terapêutico , Anidrases Carbônicas/genética , Neoplasias/patologia , Antígenos de Neoplasias/metabolismo , Concentração de Íons de Hidrogênio , Quimiocinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA