RESUMO
Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.
RESUMO
Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.
RESUMO
Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.
RESUMO
The Cu+ active sites have gained great attention in electrochemical nitrate reduction, offering a highly promising method for nitrate removal from water bodies. However, challenges arise from the instability of the Cu+ state and microscopic structure over prolonged operation, limiting the selectivity and durability of Cu+-based electrodes. Herein, a self-reconstructed Cu2O/TiO2 nanofibers (Cu2O/TiO2 NFs) catalyst, demonstrating exceptional stability over 50 cycles (12 h per cycle), a high NO3 --N removal rate of 90.2%, and N2 selectivity of 98.7% is reported. The in situ electrochemical reduction contributes to the self-reconstruction of Cu2O/TiO2 nanofibers with stabilized Cu+ sites via the electronic metal-support interaction between TiO2 substrates, as evidenced by in situ characterizations and theoretical simulations. Additionally, density functional theory (DFT) calculations also indicate that the well-retained Cu+ sites enhance catalytic capability by inhibiting the hydrogen evolution reaction and optimizing the binding energy of *NO on the Cu2O/TiO2 NFs heterostructure surface. This work proposes an effective strategy for preserving low-valence-state Cu-based catalysts with high intrinsic activity for nitrate reduction reaction (NO3RR), thereby advancing the prospects for sustainable nitrate remediation technologies.
RESUMO
The optimization of metal-support interactions is used to fabricate noble metal-based nanoclusters with high activity for hydrogen evolution reaction (HER) in acid media. Specifically, the oxygen-defective Mn3O4 nanosheets supported Pt nanoclusters of ≈1.71 nm in diameter (Pt/V·-Mn3O4 NSs) are synthesized through the controlled solvothermal reaction. The Pt/V·-Mn3O4 NSs show a superior activity and excellent stability for the HER in the acidic media. They only require an overpotential of 19 mV to drive -10 mA cm-2 and show negligible activity loss at -10 and -250 mA cm-2 for >200 and >60 h, respectively. Their Pt mass activity is 12.4 times higher than that of the Pt/C and even higher than those of many single-atom based Pt catalysts. DFT calculations show that their high HER activity arises mainly from the strong metal-support interaction between Pt and Mn3O4. It can facilitate the charge transfer from Mn3O4 to Pt, optimizing the H adsorption on the catalyst surface and promoting the evolution of H2 through the Volmer-Tafel mechanism. The oxygen vacancies in the V·-Mn3O4 NSs are found to be inconducive to the high activity of the Pt/V·-Mn3O4 NSs, highlighting the great importance to reduce the vacancy levels in V·-Mn3O4 NSs.
RESUMO
Coordination environment of metal atoms is core for designing high-performance single-atom catalysts (SACs), while metal-support interaction also has an important effect on structure-function relationship. Nevertheless, the interaction effect of metal-support is mostly ignored. Through synergistic regulation of coordination environment and metal-support interaction, Mn SAC with atom-dispersed Mn-N2 sites on dopamine (DA) support is synthesized for sensitive and selective DA oxidation based on theoretical calculations and experimental explorations. MnN2 presents the more optimal catalytic site for DA oxidation than other coordination conditions, enhancing sensitivity including a wide range, a low limit of detection, and particularly a very low catalytic potential. The construction of Mn-N2 active sites on DA carbon promotes the coupling between Mn metal atoms and DA support, decreasing work function, facilitating electron exchange, shortening response time, and boosting selectivity. Both the catalytic mechanism of Mn SAC toward DA and the relation construction of catalyst's structure and catalytic function are established.
RESUMO
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
RESUMO
It has been shown that the nature of the metal precursor and the thermal effects during calcination determine the physicochemical properties of the catalysts and their catalytic activity in the levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) hydrogenation reactions. The endothermic effect during calcination of the inorganic nickel precursor promoted higher metal dispersion and stronger interaction with the alumina surface. In contrast, the exothermic effects during the calcination of organic nickel precursors resulted in smaller metal dispersion and lower interaction with the support surface. A clear relationship was found between the size of the metal crystallites and the yield of LA hydrogenation reaction. The smaller crystallites were more active in the LA hydrogenation reaction. In turn, the size of the metal particles and their nature of interaction with the surface of the alumina influence the hydrogenation pathways of the HMF.
RESUMO
Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.
RESUMO
Platinum-based supported intermetallic alloys (IMAs) demonstrate exceptional performance in catalytic propane dehydrogenation (PDH) primarily because of their remarkable resistance to coke formation. However, these IMAs still encounter a significant hurdle in the form of catalyst deactivation. Understanding the complex deactivation mechanism of supported IMAs, which goes beyond conventional coke deposition, requires meticulous microscopic structural elucidation. In this study, we unravel a nonclassical deactivation mechanism over a PtZn/γ-Al2O3 PDH catalyst, dictated by the PtZn to Pt3Zn nanophase transformation accompanied with dezincification. The physical origin lies in the metal support interaction (MSI) that enables strong chemical bonding between hydroxyl groups on the support and Zn sites on the PtZn phase to selectively remove Zn species followed by the reconstruction towards Pt3Zn phase. Building on these insights, we have devised a solution to circumvent the deactivation by passivating the MSI through surface modification of γ-Al2O3 support. By exchanging protons of hydroxyl groups with potassium ions (K) on the γ-Al2O3 support, such a strategy significantly minimizes the dezincification of PtZn IMA via diminished metal-support bonding, which dramatically reduces the deactivation rate from 0.2044 to 0.0587â h-1. These findings decode the nonclassical PDH deactivation mechanism over supported IMA catalysts and elaborate a new logic for the design of high-performance IMA based PDH catalysts with long-term stability.
RESUMO
The catalytic activities and stability of oxide-supported metal catalysts are significantly affected by metal-support interactions (MSI) between oxidic supports and supported metals. The surface properties of the support, such as its phase and defects, are crucial in MSI, including both the strong metal-support interaction (SMSI) and electronic metal-support interaction (EMSI). In this study, modulation of SMSI was achieved on rutile-supported Pt nanoparticles (NP) over high-temperature CO2 hydrogenation. The encapsulation of Pt NP surfaces with TiO2-x overlayers is precisely controlled by the defects. It is found that oxygen vacancy defects significantly enhance the catalytic stability of Pt/rutile under high-temperature reverse water-gas shift (RWGS) reaction by inhibiting the occurrence of SMSI. Pt/rutile with oxygen vacancies achieves a 301 molCO×gM-1×h-1 space time yield and considerably catalytic stability (decreased by 8%) at 800 °C over 100 h time-on-stream. Density functional theory (DFT) calculations suggest that the adsorption capacity of Pt NP on the rutile overlayer can be reduced by increasing electron density. Experimental results combined with DFT calculations show that electron transfer from Pt NP to rutile is reduced by the oxygen vacancy defects on Pt/R, preserving the metallic nature of Pt species during CO2 hydrogenation, thereby preventing the formation of SMSI.
RESUMO
The efficient electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for H2O2 electrosynthesis at near-zero overpotential with approximately 95 % selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional H2O2 yield of 15.77â mol gcatalyst -1 h-1, generating a neutral H2O2 solution with an accumulated concentration of 6.43â wt %, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O2 enrichment and localized pH elevation, establishing a favorable microenvironment for 2e- ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e- process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e- ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.
RESUMO
Strong metal-support interaction (SMSI) plays a vital role in tuning the geometric and electronic structures of metal species. Generally, a high-temperature treatment (>500 °C) in reducing atmosphere is required for constructing SMSI, which may induce the sintering of metal species. Herein, we use molten salts as the reaction media to trigger the formation of high-intensity SMSI at reduced temperatures. The strong ionic polarization of the molten salt promotes the breakage of Ti-O bonds in the TiO2 support, and hence decreases the energy barrier for the formation of interfacial bonds. Consequently, a high-intensity SMSI state is achieved in TiO2 supported Ir nanoclusters, evidenced by a large number of Ir-Ti bonds at the interface, at a low temperature of 350 °C. Moreover, this method is applicable for triggering SMSI in various supported metal catalysts with different oxide supports including CeO2 and SnO2. This newly developed SMSI construction methodology opens a new avenue and holds significant potential for engineering advanced supported metal catalysts toward a broad range of applications.
RESUMO
Strong metal-support interactions (SMSI) are crucial for stabilizing sub-2 nm metal sites, e.g. single atom (M1) or cluster (Mn). However, further optimizing sub-2 nm sites to break the activity-stability trade-off due to excessive interactions remains significant challenges. Accordingly, for the first time, we propose synergizing SMSI with reactive metal-support interactions (RMSI). Comprehensive characterization confirms that the SMSI stabilizes the metal and regulates the aggregation of Ni1 into Nin site within sub-2 nm. Meanwhile, RMSI modulates Nin through sufficiently activating P in the support and eventually generates sub-2 nm metal phosphide Ni2P cluster (Ni2Pn). The synergetic metal-support interactions triggered the adaptive coordination and electronic structure optimization of Ni2Pn, leading to the desired substrate adsorption-desorption kinetics. Consequently, the activity of Ni2Pn site greatly enhanced towards the selective hydrogenations of p-chloronitrobenzene and alkynyl alcohol. The formation rates of target products are up to 20.2 and 3.0 times greater than that of Ni1 and Nin site, respectively. This work may open a new direction for metal-support interactions and promote innovation and application of active sites below 2 nm.
RESUMO
Supported metal catalysts are widely used for chemical conversion, in which construction of high density metal-oxide or oxide-metal interface is an important means to improve their reaction performance. Here, Cu@ZnOx encapsulation structure has been in situ constructed through gas-phase migration of Zn species from ZnO particles onto surface of Cu nanoparticles under CO2 hydrogenation atmosphere at 450 °C. The gas-phase deposition of Zn species onto the Cu surface and growth of ZnOx overlayer is self-limited under the high temperature and redox gas (CO2 /H2 ) conditions. Accordingly, high density ZnOx -Cu interface sites can be effectively tailored to have an enhanced activity in CO2 hydrogenation to methanol. This work reveals a new route for the construction of active oxide-metal interface and classic strong metal-support interaction state through gas-phase migration of support species induced by high temperature redox reaction atmosphere.
RESUMO
Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10-PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10-PtNi-Ni/ZrO2-RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76â A mgPt -1 at 0.9â V, peak power density=1.52/0.92â W cm-2 in H2-O2/-air, and 18.4 % MA decay after 30,000â cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10-PtNi-Ni/ZrO2-RMSI requires a lower energetic barrier for ORR than L10-PtNi-Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10-PtNi-Ni/ZrO2-RMSI compared to L10-PtNi-C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.
RESUMO
Supported metal catalysts with appropriate metal-support interactions (MSIs) hold a great promise for heterogeneous catalysis. However, ensuring tight immobilization of metal clusters/nanoparticles on the support while maximizing the exposure of surface active sites remains a huge challenge. Herein, we report an Ir/WO3 catalyst with a new enrooted-type MSI in which Ir clusters are, unprecedentedly, atomically enrooted into the WO3 lattice. The enrooted Ir atoms decrease the electron density of the constructed interface compared to the adhered (root-free) type, thereby achieving appropriate adsorption toward oxygen intermediates, ultimately leading to high activity and stability for oxygen evolution in acidic media. Importantly, this work provides a new enrooted-type supported metal catalyst, which endows suitable MSI and maximizes the exposure of surface active sites in contrast to the conventional adhered, embedded, and encapsulated types.
RESUMO
Few-atom metal clusters (FAMCs) exhibit superior performance in catalyzing complex molecular transformations due to their special spatial environments and electronic states, compared to single-atom catalysts (SACs). However, achieving the efficient and accurate synthesis of FAMCs while avoiding the formation of other species, such as nanoparticles and SACs, still remains challenges. Herein, we report a two-step strategy for synthesis of few-atom platinum (Pt) clusters by predeposition of zinc single-atom-glue (Zn1) on MgO nanosheets (Ptn-Zn1/MgO), where FAMCs can be obtained over a wide range of Pt contents (0.09 to 1.45â wt %). Zn atoms can act as Lewis acidic sites to allow electron transfer between Zn and Pt through bridging O atoms, which play a crucial role in the formation and stabilization of few-atom Pt clusters. Ptn-Zn1/MgO exhibited a high selectivity of 93 % for anti-Markovnikov alkene hydrosilylation. Moreover, an excellent activity with a turnover frequency of up to 1.6×104â h-1 can be achieved, exceeding most of the reported Pt SACs. Further theoretical studies revealed that the Pt atoms in Ptn-Zn1/MgO possess moderate steric hindrance, which enables high selectivity and activity for hydrosilylation. This work presents some guidelines for utilizing atomic-scale species to increase the synthesis efficiency and precision of FAMCs.
RESUMO
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
RESUMO
Topological defects are inevitable existence in carbon-based frameworks, but their intrinsic electrocatalytic activity and mechanism remain under-explored. Herein, the hydrogen evolution reaction (HER) of pentagonal carbon-rings is probed by constructing pentagonal ring-rich carbon (PRC), with optimized electronic structures and higher HER activity relative to common hexagonal carbon (HC). Furthermore, to improve the reactivity, we couple Ru clusters with PRC (Ru@PRC) through p-d orbital hybridization between C and Ru atoms, which drives a shortcut transfer of electrons from Ru clusters to pentagonal rings. The electron-deficient Ru species leads to a notable negative shift in d-band centers of Ru and weakens their binding strength with hydrogen intermediates, thus enhancing the HER activity in different pH media. Especially, at a current density of 10â mA cm-2, PRC greatly reduces alkaline HER overpotentials from 540 to 380â mV. And Ru@PRC even exhibits low overpotentials of 28 and 275â mV to reach current densities of 10 and 1000â mA cm-2, respectively. Impressively, the mass activity and price activity of Ru@PRC are 7.83 and 15.7â times higher than that of Pt/C at the overpotential of 50â mV. Our data unveil the positive HER reactivity of pentagonal defects and good application prospects.