Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401510, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745545

RESUMO

To simulate life's emergent functions, mining the multiple sensing capabilities of nanosystems, and digitizing networks of transduction signals and molecular interactions, is an ongoing endeavor. Here, multifunctional antimonene-silver nanocomposites (AM-Ag NCs) are synthesized facilely and fused for molecular sensing and digitization applications (including ultra-multi-mode and multi-analyte sensing, parallel and batch logic computing, long-text information protection). By mixing surfactant, AM, Ag+ and Sodium borohydride (NaBH4) at room temperature for 5 min, the resulting NCs are comprised of Ag nanoparticles scattered within AM nanosheets and protected by the surfactant. Interestingly, AM-Ag NCs exhibit ultra-multi-mode sensing ability for multiplex metal ions (Hg2+, Fe3+, or Al3+), which significantly improved selectivity (≈2 times) and sensitivity (≈400 times) when analyzing the combined channels. Moreover, multiple sensing capabilities of AM-Ag NCs enable diverse batch and parallel molecular logic computations (including advanced cascaded logic circuits). Ultra-multi-mode selective patterns of AM-Ag NCs to 18 kinds of metal ions can be converted into a series of binary strings by setting the thresholds, and realized high-density, long-text information protection for the first time. This study provides new ideas and paradigms for the preparation and multi-purpose application of 2D nanocomposites, but also offers new directions for the fusion of molecular sensing and informatization.

2.
J Fluoresc ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507127

RESUMO

This study presents a facile one-pot solvothermal synthesis of high-performance green fluorescent carbon dots (G-CDs) using o-phenylenediamine and ethylenediamine as precursors. The G-CDs show excellent optical, temporal, and chemical stability. Notably, they exhibit the highest quantum yield of 24.2% in ethanol and a strong green emission peaking at 546 nm under 440-490 nm excitation. In addition, G-CDs have outstanding salt resistance and multi-solvent compatibility. Due to its bright photoluminescence, G-CDs can be used as a secure ink for anti-counterfeiting. More remarkably, Cd2+ ions can efficiently quench the fluorescence of G-CDs with a detection limit of 0.152 µmol/L, enabling accurate quantification of Cd2+ in water systems. The simple synthesis of high-performance G-CDs expands their applicability in sensing and bioimaging.

3.
J Fluoresc ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175458

RESUMO

In recent years, the development of optical chemosensors for the sensitive and selective detection of trace level metal ions in aqueous media has garnered significant attention within the scientific community. This review article provides a comprehensive overview of the synthesis strategies and applications of optical chemosensors dedicated to the detection of metal ions at low concentrations in water-based environments. The discussion encompasses a wide range of metal ions, including but not limited to heavy metals, transition metals, and rare earth elements, emphasizing their significance in environmental monitoring, industrial processes, and biological systems. The review explores into the synthesis methodologies employed for designing optical chemosensors, discovering diverse materials like organic dyes, nanoparticles, polymers, and hybrid materials. Special attention is given to the design principles that enable the selective recognition of specific metal ions, highlighting the role of ligand chemistry, coordination interactions, and structural modifications. Furthermore, the article thoroughly surveys the analytical performance of optical chemosensors in terms of sensitivity, selectivity, response time, and detection limits. Real-world applications, including water quality assessment, environmental monitoring, and biomedical diagnostics, are extensively covered to underscore the practical relevance of these sensing platforms. Additionally, the review sheds light on emerging trends, challenges, and future prospects in the field, providing insights into potential advancements and innovations. By synthesizing the current state of knowledge on optical chemosensors for trace level metal ions detection. The collective information presented herein not only offers a comprehensive understanding of the existing technologies but also inspires future research endeavors to address the evolving demands in the realm of trace metal ion detection.

4.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276609

RESUMO

In the present work, several coumarin-3-carboxamides with different azacrown ether moieties were designed and tested as potential luminescent sensors for metal ions. The derivative containing a 1-aza-15-crown-5 as a metal chelating group was found to yield the strongest response for Ca2+ and Pb2+, exhibiting an eight- and nine-fold emission increase, respectively, while other cations induced no changes in the optical properties of the chemosensor molecule. Job's plots revealed a 1:1 binding stoichiometry, with association constants of 4.8 × 104 and 8.7 × 104 M-1, and limits of detection of 1.21 and 8.04 µM, for Ca2+ and Pb2+, respectively. Computational studies suggest the existence of a PET quenching mechanism, which is inhibited after complexation with each of these two metals. Proton NMR experiments and X-ray crystallography suggest a contribution from the carbonyl groups in the coumarin-3-carboxamide fluorophore in the coordination sphere of the metal ion.

5.
J Fluoresc ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615896

RESUMO

Fluorescent sensor-based carbon dots (CDs) have significantly developed for sensing metal ions because of their great physical and optical properties, including tunable fluorescence emission, high fluorescence quantum yield, high sensitivity, non-toxicity, and biocompatibility. In this research, a green synthetic approach via simple gamma irradiation for the carbon dot synthesis from water hyacinth was developed since water hyacinth has been classified as an invasive aquatic plant containing cellulose, hemicellulose, and lignin. The thiol moiety (SH) was further functionalized on the surface functional groups of CDs as the "turn-off" fluorescent sensor for metal ion detection. Fluorescence emission displayed a red shift from 451 to 548 nm when excited between 240 and 500 nm. The quantum yield of CDs-SH was elucidated to be 13%, with strong blue fluorescence emission under ultraviolet irridiation (365 nm), high photostability and no photobleaching. The limit of detection was determined at micromolar levels for Hg2+, Cu2+, and Fe3+. CDs-SH could be a real-time monitoring sensor for Hg2+ and Cu2+ as fluorescence quenching was observed within 2 min. Furthermore, paper test-strip based CDs-SH could be applied to detect these metal ions.

6.
Mikrochim Acta ; 190(3): 105, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843138

RESUMO

A creatively designed and constructed a multifunctional ratiometric fluorescence probe is reported by assembling glutathione (GSH)-protected gold nanoclusters (AuNCs) with fluorescein-doped mesoporous silica nanoparticle (FS) for the detection of Cu2+ and Ag+ ions, which could eliminate most interferences by self-calibration. Under the excitation at 450 nm, the fluorescence connected with AuNCs can rapidly respond by quenching or enhancement, respectively, for Cu2+ and Ag+ ions, while the fluorescein isothiocyante (FITC) fluorescence served as reference with negligible change. The fluorescence intensity ratio showed good linear relationships with Cu2+ and Ag+ concentrations in the range 0.5-10 µM and 0.1-8 µM, respectively. The detection limits were as low as 140 nM and 60 nM for Cu2+ and Ag+ ions, respectively. The color change induced by fluorescent intensity ratio variation could also be employed for visual discrimination. The AuNC-embedded FS (FS-Au) nanoprobe was successfully used for Cu2+ and Ag+ ion determination in drinking water and intracellular Cu2+ imaging, which exhibits promising prospects in cost-effective and rapid determination of both Cu2+ and Ag+ with good sensitivity and selectivity.

7.
Molecules ; 28(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175061

RESUMO

Carbon-based nanoprobes, with excellent physicochemical performance and biocompatibility, are a kind of ideal nanomaterial for biosensing. Herein, we designed and prepared novel oxygen-doped nitrogen-enrichment carbon nanoribbons (ONCNs) with an excellent optical performance and uniform morphology, which could be used as a dual-mode fluorescence probe for the detection of Ag+ ion and captopril (Ctl) based on the synergism of photo-induced electron transfer and aggregation-induced quenching mechanisms. By recording the changes in fluorescent intensities of ONCNs, the Ag+ ion and Ctl concentrations can be easily tested in real samples. The results displayed that two good linear relationships existed between the change in fluorescent intensity of ONCNs and the concentrations of Ag+ ion and Ctl in the ranges of 3 µM to 30 µM and 1 µM to 30 µM, with the detection limit of 0.78 µM and 74 nM, respectively. The proposed sensing platform has also been successfully applied for the Ctl analysis in commercial tablet samples based on its high selectivity, proving its value in practical applications.


Assuntos
Pontos Quânticos , Prata/análise , Captopril , Elétrons , Carbono , Corantes Fluorescentes
8.
J Fluoresc ; 31(4): 1153-1160, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33978883

RESUMO

Carbon nanodots (CDs) have exhibited excellent sensing capability for various metal ions. However, it is difficult to determine the selectivity of CDs to metal ions. In this work, we chose appropriate carbon source to design CD sensors against Cu(II) and Ag(I). Glycine, histidine and leucine have been confirmed to form complexes with Cu(II) and Ag(I), and were applied to prepare CDs using microwave heating method. The as-prepared CDs inherited the specific ion-binding capability from their carbon source and could response to both Cu(II) and Ag(I). The response sensitivity corresponded to the binding energy between the carbon source and metal ions. These experimental results are very important for the further design of CD sensors for a large variety of analytes.

9.
Macromol Rapid Commun ; 41(12): e2000179, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32463567

RESUMO

As an important nitrogen source, isocyanides have been involved in numerous organic reactions. As a result, many complicated compounds have been successfully synthesized through isocyanide chemistry. However, compared with its popular research in organic reactions, the application of isocyanides in polymerization is less investigated. In this work, a new polymerization based on isocyanide monomers is established. By simply mixing diisocyanoacetates and dialdehydes in the presence of a catalytic system of CuCl/PPh3 /organobase in dichloromethane at room temperature readily produces soluble and thermally stable oxazoline-containing polymers with moderate weight-averaged molecular weights (Mw up to 11 200) in excellent yields (up to 97%) after 6 h. Furthermore, introducing the tetraphenylethene moiety into the main chains endows the resultant polymers with aggregation-induced emission, which can function as fluorescent probes for Fe3+ ion detection with high sensitivity and selectivity. This work not only enriches the family of isocyanide-based polymerizations but also provides an efficient tool for the preparation of functional heterocycle-containing polymers.


Assuntos
Aldeídos/química , Cianetos/química , Corantes Fluorescentes/química , Oxazóis/química , Polímeros/síntese química , Compostos Férricos/análise , Corantes Fluorescentes/síntese química , Íons/análise , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Polimerização , Polímeros/química
10.
Luminescence ; 35(1): 34-42, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31423706

RESUMO

In this paper, two types of carbon quantum dot (CQDs) were prepared using biocompatible l-methionine as the carbon source and urea as the nitrogen source and a one-step hydrothermal treatment. By changing the reaction solvents (deionized (DI) water and dimethylformamide (DMF)), the maximum emission of the resulting CQDs shifted from blue to red light. Specifically, the emission wavelength of the CQDs moved from 433 nm to 625 nm following embedding of a new functional group (-CONH-) on the surface of the CQDs. Photoluminescence quantum yields of the CQDs with blue and red emission reached 64% and 61%, respectively. The R-CQDs were used to detect metal ions and a linear relationship was demonstrated between ln(F/F0 ) and Fe3+ concentration in the range 0-0.5 mmol/L with a detection limit of 0.067 µM. Therefore these R-CQDs have great potential as fluorescent probes for Fe3+ detection. We expect that the excellent water-soluble, biocompatible and optical properties of the CQDs developed in this work mean that they will be widely used to detect biological cells.


Assuntos
Carbono/química , Cor , Compostos Férricos/análise , Fluorescência , Corantes Fluorescentes/química , Pontos Quânticos/química , Corantes Fluorescentes/síntese química , Solventes/química , Espectrometria de Fluorescência
11.
Sensors (Basel) ; 19(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086067

RESUMO

Mercury ion selective membrane (Hg-ISM) coated extended gate Field Effect transistors (ISM-FET) were used to manifest a novel methodology for ion-selective sensors based on FET's, creating ultra-high sensitivity (-36 mV/log [Hg2+]) and outweighing ideal Nernst sensitivity limit (-29.58 mV/log [Hg2+]) for mercury ion. This highly enhanced sensitivity compared with the ion-selective electrode (ISE) (10-7 M) has reduced the limit of detection (10-13 M) of Hg2+ concentration's magnitude to considerable orders irrespective of the pH of the test solution. Systematical investigation was carried out by modulating sensor design and bias voltage, revealing that higher sensitivity and a lower detection limit can be attained in an adequately stronger electric field. Our sensor has a limit of detection of 10-13 M which is two orders lower than Inductively Coupled Plasma Mass Spectrometry (ICP-MS), having a limit of detection of 10-11 M. The sensitivity and detection limit do not have axiomatic changes under the presence of high concentrations of interfering ions. The technology offers economic and consumer friendly water quality monitoring options intended for homes, offices and industries.

12.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035499

RESUMO

Chromium, one of the top five toxic heavy metals ranked according to significance in public health by WHO, exists as Cr(III) which is naturally occurring or Cr(VI) which is anthropogenic in origin. The EPA specifies the maximum contaminant level in drinking water to be 10-6 M or 0.1 mg/L or 100 ppb for the total dissolved Cr. To ensure the water consumed by the population has these pollutants below the safe threshold, this report demonstrates a field effect transistor (FET) based sensor design incorporating a highly target specific ion-selective membrane combined with extended gate technology which manifests sensitivity exceeding the Nernst limit aided by the high field effect in the short gap region of extended gate technology. Characterization and repeated testing of the portable device revealed a commendable calibration sensitivity of 99 mV/log [Cr3+] and 71 mV/log [Cr6+] for Cr(III) and Cr(VI) respectively, well surpassing the Nernst limits of sensitivity and offering a detection limit lower than ion-selective electrodes (10-6 M), and comparable to the expensive benchtop laboratory instrument, ICP-MS. This report presents a robust, easy to fabricate, economic and efficient handheld biosensor to detect the chromium in a liquid sample whether it exists as Cr(III) or Cr(VI).

13.
Luminescence ; 32(8): 1398-1404, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28590050

RESUMO

A new fluorescence receptor calix[4]pyrrole-N-(quinoline-8-yl) acetamide (CAMQ) containing a pyrrolic ring connected via the meso-position was synthesized, purified and characterized by elemental analysis, NMR and mass spectroscopy. This compound was examined for its fluorescence properties towards different metal ions e.g. Ag(I), Hg(II), Co(II), Ca(II), Ni(II), Zn(II), Cr(II), Ba(II), Fe(II), Cu(II), Pb(II)and Mg(II) ions by spectrophotometry and spectrofluorometry. It was concluded that the compound (CAMQ) possessed significantly enhanced selectivity for Pb(II) and Cu(II) ions in dimethyl sulfoxide (DMSO) even at very low concentrations (1 µM). It exhibit 'turn-on' fluorescence when exposed to Pb(II) and Cu(II) and did so in preference to other metal ions. The binding constants, stoichiometry and quantum yields have been determined. The quenching mechanism was assessed using the Stern-Volmer equation and was also discussed.


Assuntos
Aminas/química , Calixarenos/química , Cobre/análise , Corantes Fluorescentes/química , Chumbo/análise , Porfirinas/química , Quinolinas/química , Corantes Fluorescentes/síntese química , Íons/análise , Estrutura Molecular , Teoria Quântica
14.
Luminescence ; 31(1): 81-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25964146

RESUMO

Highly fluorescent nitrogen and phosphorus-doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di-ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as-obtained carbon dots are well monodispersed with particle sizes 1.5-4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe(3+) ions as well as cancer cell imaging.


Assuntos
Carbono/química , Compostos Férricos/análise , Corantes Fluorescentes/química , Nitrogênio/química , Fósforo/química , Pontos Quânticos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fluorescência , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Medições Luminescentes , Células MCF-7 , Tamanho da Partícula , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície
15.
Eur J Inorg Chem ; 2013(7): 1086-1096, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25089117

RESUMO

In the past Pb2+ has been used in many industries, including gasoline, piping, toys, paints, and more. The use of lead has led to a natural increase of lead concentration in the environment especially in air and water. According to the U.S. CDC "no level of lead in blood is considered safe." Exposure to very low amounts of lead can cause several health complications including developmental and neurological disorders. Over the past several years an emphasis has been placed in developing systems that can detect lead at a very low concentration. A great deal of work has been accomplished in the development of Pb2+ sensors that can not only detect but also quantify the amount and in some cases in the presence of other metal ions. Herein, we describe current regulations, mode of exposure and recent development of sensing techniques.

16.
ACS Appl Mater Interfaces ; 15(26): 32047-32056, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345757

RESUMO

Microsphere arrays have significant applications and broad development prospects in various fields and disciplines. The simple, efficient, low-cost, automatic, and controllable preparation of microsphere arrays in multiple dimensions and morphologies is still a significant challenge. Here, a novel microsphere array direct writing technology was developed using a low-cost portable droplet microfluidic device and a high-precision XY movable platform. The proposed technology provided a powerful platform for the direct-writing preparation of microsphere arrays and was successfully applied to the precise and controllable fabrication of microsphere arrays with different sizes, shapes, structures, and arrangements. Additionally, gel microsphere arrays with metal ion patterns were fabricated using the microsphere arrays as templates and exhibited excellent performance in the visual analytical detection of heavy metal ions. Moreover, the simulated microsphere arrays offer a promising platform for rapidly generating high-viability and uniform 3D tumor spheroids. Therefore, given the superiority of this technology and the great potential of microsphere arrays, this simple high-speed microsphere array direct writing technology has a promising application in the multidisciplinary intersection of chemical, biological, and material sciences.

17.
Anal Sci ; 39(9): 1475-1482, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209382

RESUMO

We built a portable microchip electrophoresis heavy metal ion detection system and proposed a pH-mediated field amplified sample stacking (pH-mediated FASS) online preconcentration method. The pH-mediated FASS focuses and stacks heavy metal cations by controlling electrophoretic mobilities with a pH change between the analyte and the background electrolyte (BGE) in solution to improve the detection sensitivity of the system. We optimized and adjusted sample matrix solution (SMS) ratios and pH to create concentration and pH gradients for SMS and BGE. Furthermore, we optimize the microchannel width to improve the preconcentration effect further. The system and method analyzed soil leachates polluted with heavy metals and separated Pb2+ and Cd2+ within 90 s, obtaining their levels at 58.01 mg/L and 4.91 mg/L with sensitivity enhancement factors (SEF) of 26.40 and 43.73. Compared with inductively coupled plasma atomic emission spectrometry (ICP-AES), the detection error of the system was less than 8.80%.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122291, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603276

RESUMO

Some nanosystems based on carbon nanomaterials have been used for fluorescent chemical/biosensing, elementary information processing, and textual coding. However, little attention has been paid to utilizing biowaste-derived carbon nanomaterials for colorimetric multi-channel sensing and advanced molecular information protection (including text and pattern information). Herein, fish scale-derived carbon nanoparticles (FSCN) were prepared and used for colorimetric detection of metal ions, encoding, encrypting and hiding text- and pattern-based information. The morphology and composition of FSCN were analyzed by TEM, XRD, FTIR, and XPS, and it was found that the FSCN-based multi-channel colorimetric sensing system can detect Cr6+ (detection limit of 56.59 nM and 13.32 nM) and Fe3+ (detection limit of 81.55 nM) through the changes of absorption intensity at different wavelengths (272, 370, and 310 nm). Moreover, the selective responses of FSCN to 20 kinds of metal ions can be abstracted into a series of binary strings, which can encode, hide, and encrypt traditional text-based and even two-dimensional pattern-based information. The preparation of carbon nanomaterials derived from waste fish scales can stimulate other researcheres' enthusiasm for the development and utilization of wastes and promoting resource recycling. Inspired by this work, more researches will continue to explore the world of molecular information technology.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122279, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646041

RESUMO

New fluorescent polymeric sensors containing in situ photogenerated gold nanoparticles (Au NPs) and fluorescein-based copolymers are reported. They are tested as efficient fluorescent chemosensors for the sensitive detection of toxic divalent metal ions, such as Co2+, Cu2+, Cd2+, (UO2)2+, Pb2+, Zn2+and Hg2+. Their fluorescence quenching process depends on the concentration of metal cations and is comparatively analyzed for both the starting copolymers and the corresponding hybrid materials. Thus, the best results are recorded for uranyl (4 × 10-6 M) and copper ions (16 × 10-6 M), respectively. The detection limits of the investigated hybrid materials are lower by an order of magnitude compared to the starting copolymers, while the fluorescence quenching mechanism mainly occurred by a dynamic process, following a linear Stern-Volmer relationship. Thus, the report fundamentally confirms the influence of small amounts of Au NP (2 wt%) on the improved sensitivity of the final fluorescent sensors.

20.
Micromachines (Basel) ; 14(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630131

RESUMO

The presence of heavy metal ions in soil, air and water constitutes an important global environmental threat, as these ions accumulate throughout the food chain, contributing to the rise of chronic diseases, including, amongst others, cancer and kidney failure. To date, many efforts have been made for their detection, but there is still a need for the development of sensitive, low-cost, and portable devices able to conduct on-site detection of heavy metal ions. In this work, we combine microfluidic technology and electrochemical sensing in a plastic chip for the selective detection of heavy metal ions utilizing DNAzymes immobilized in between platinum nanoparticles (PtNPs), demonstrating a reliable portable solution for water pollution monitoring. For the realization of the microfluidic-based heavy metal ion detection device, a fast and easy-to-implement fabrication method based on the photolithography of dry photosensitive layers is proposed. As a proof of concept, we demonstrate the detection of Pb2+ ions using the prototype microfluidic device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA