Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(5): 2363-2374, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976445

RESUMO

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.


Assuntos
Citrus sinensis , Metiltransferases , Proteínas de Plantas , Vitis , Zea mays , ortoaminobenzoatos , Zea mays/genética , Zea mays/metabolismo , Vitis/genética , Vitis/metabolismo , ortoaminobenzoatos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
2.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614043

RESUMO

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Assuntos
Citrus , MicroRNAs , Rhizobiaceae , Citrus/fisiologia , Doenças das Plantas , Melhoramento Vegetal , Salicilatos/metabolismo , Liberibacter/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733408

RESUMO

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Assuntos
Glycine max , Doenças das Plantas , Salicilatos , Tylenchoidea , Animais , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salicilatos/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade
4.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791472

RESUMO

Yellow pitahaya is a tropical fruit that has gained popularity in recent years. Natural elicitors are compounds that can stimulate the resistance and quality of fruits. The objective of this study was to evaluate the effects of natural elicitors, methyl salicylate (MeSa), methyl jasmonate (JaMe), salicylic acid (SA) and oxalic acid (OA) at concentrations of 0.1 mM (MeSa and JaMe) and 5 mM (SA and OA), applied to the yellow pitahaya fruits under greenhouse conditions. After full blossom, four applications were made with a frequency of 15 days. At the time of harvest and after storage, the following variables were evaluated: firmness (whole fruit), total soluble solids (TSS), total acidity (TA), phenolics and carotenoids (in the pulp), while phenolics, carotenoids, macronutrients and micronutrients were determined in the peel. The results showed MeSa advanced the fruit maturation, according to higher TSS, lower TA and firmness than MeJa-treated fruits, for which a delayed ripening process was shown. All treatments induced a higher polyphenolic concentration during storage. Regarding the alternative use of the peel as a by-product, the application of natural elicitors significantly increased the content of polyphenols, carotenoids, macronutrients and micronutrients in the peel, especially MeSa, which can be used as a bioactive compound in the food industry. In conclusion, the results indicate that natural elicitors can be an alternative to improve the quality and shelf life of yellow pitahaya fruits.


Assuntos
Acetatos , Cactaceae , Carotenoides , Ciclopentanos , Armazenamento de Alimentos , Frutas , Oxilipinas , Ácido Salicílico , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Carotenoides/metabolismo , Armazenamento de Alimentos/métodos , Cactaceae/química , Cactaceae/crescimento & desenvolvimento , Cactaceae/metabolismo , Ácido Salicílico/farmacologia , Salicilatos/farmacologia , Salicilatos/metabolismo , Fenóis/análise , Ácido Oxálico/metabolismo
5.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930798

RESUMO

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Assuntos
Capsaicina , Diclofenaco , Salicilatos , Pele , Capsaicina/análise , Capsaicina/análogos & derivados , Diclofenaco/análise , Cromatografia Líquida de Alta Pressão/métodos , Salicilatos/análise , Pele/química , Animais , Coelhos , Cromatografia de Fase Reversa/métodos , Dietilaminas/química
6.
Phytochem Rev ; : 1-16, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359710

RESUMO

Chimaphila umbellata has been studied for almost two centuries now, with the first paper exploring the phytochemistry of the plant published in 1860. Almost all contemporary studies focus on the biotechnological advances of C. umbellata including its utilization as a natural alternative in the cosmetic, food, biofuel, and healthcare industry, with a special focus on its therapeutic uses. This literature review critically investigates the significance and applications of secondary metabolites extracted from the plant and presses on the biotechnological approaches to improve its utilization. C. umbellata is home to many industrially and medicinally important phytochemicals, the majority of which belong to phenolics, sterols, and triterpenoids. Other important compounds include 5-hydroxymethylfurfural, isohomoarbutin, and methyl salicylate (the only essential oil of the plant). Chimaphilin is the characteristic phytochemical of the plant. This review focuses on the phytochemistry of C. umbellata and digs into their chemical structures and attributes. It further discusses the challenges of working with C. umbellata including its alarming conservation status, problems with in-vitro cultivation, and research and development issues. This review concludes with recommendations based on biotechnology, bioinformatics, and their crucial interface.

7.
Biochem Biophys Res Commun ; 609: 156-162, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35430419

RESUMO

The insect repellent methyl salicylate elicits excitatory responses upon interaction with CquiOR32, an odorant receptor (OR) from the southern house mosquito, Culex quinquefasciatus. By contrast, eucalyptol binds to CquiOR32 to generate electrophysiological and behavioral inhibitory responses. In an attempt to identify CquiOR32 variants displaying more robust inhibitory responses for more accurate current-voltage analysis, we sequenced 31 CquiOR32 clones. In the Xenopus oocyte recording system, CquiOR32V2/CquiOrco-expressing oocytes yielded eucalyptol-elicited outward (inhibitory) currents relatively larger than methyl salicylate-generated inward (excitatory) currents. Rescuing experiments showed that two of the amino acid substitutions in CquiOR32V2 located in a predicted transmembrane helix of the receptor are determinants of the outward/inward ratios. These findings, along with co-stimulus assays, suggest that odorant and inhibitor may bind to the same binding pocket. Current-voltage relationships obtained with standard perfusion buffer and those devoid of Na+ or Cl- indicated that both excitatory and inhibitory currents are mediated, at least in part, by cation. We then concluded that eucalyptol is an inverse agonist, which shifts the open ⇔ closed equilibrium of the receptor toward the closed conformation, thus reducing the spontaneous activity. By contrast, the binding of methyl salicylate shifts the equilibrium towards the open conformation and, consequently, leads to an increase in cation influx.


Assuntos
Culicidae , Receptores Odorantes , Animais , Eucaliptol/farmacologia , Odorantes , Receptores Odorantes/metabolismo , Olfato/fisiologia
8.
Plant Cell Rep ; 41(12): 2305-2320, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36107199

RESUMO

KEY MESSAGE: Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.


Assuntos
Citrus sinensis , Citrus , Rhizobiaceae , Nicotiana/genética , Citrus/genética , Doenças das Plantas/genética , Citrus sinensis/genética , Citrus sinensis/metabolismo , Liberibacter , Ácido Salicílico/metabolismo
9.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897943

RESUMO

SiO2-SO3H, with a surface area of 115 m2/g and pore volume of 0.38 cm3g-1, and 1.32 mmol H+/g was used as a 20% w/w catalyst for the preparation of methyl salicylate (wintergreen oil or MS) from acetylsalicylic acid (ASA). A 94% conversion was achieved in a microwave reactor over 40 min at 120 °C in MeOH. The resulting crude product was purified by flash chromatography. The catalyst could be reused three times.


Assuntos
Micro-Ondas , Dióxido de Silício , Aspirina , Biocombustíveis , Catálise , Esterificação , Óleos Voláteis , Extratos Vegetais , Óleos de Plantas/química , Salicilatos
10.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268714

RESUMO

Plants produce volatile organic compounds that are important in communication and defense. While studies have largely focused on volatiles emitted from aboveground plant parts upon exposure to biotic or abiotic stresses, volatile emissions from roots upon aboveground stress are less studied. Here, we investigated if tomato plants under insect herbivore attack exhibited a different root volatilome than non-stressed plants, and whether this was influenced by the plant's genetic background. To this end, we analyzed one domesticated and one wild tomato species, i.e., Solanum lycopersicum cv Moneymaker and Solanum pimpinellifolium, respectively, exposed to leaf herbivory by the insect Spodoptera exigua. Root volatiles were trapped with two sorbent materials, HiSorb and PDMS, at 24 h after exposure to insect stress. Our results revealed that differences in root volatilome were species-, stress-, and material-dependent. Upon leaf herbivory, the domesticated and wild tomato species showed different root volatile profiles. The wild species presented the largest change in root volatile compounds with an overall reduction in monoterpene emission under stress. Similarly, the domesticated species presented a slight reduction in monoterpene emission and an increased production of fatty-acid-derived volatiles under stress. Volatile profiles differed between the two sorbent materials, and both were required to obtain a more comprehensive characterization of the root volatilome. Collectively, these results provide a strong basis to further unravel the impact of herbivory stress on systemic volatile emissions.


Assuntos
Solanum lycopersicum , Solanum , Compostos Orgânicos Voláteis , Animais , Herbivoria , Solanum lycopersicum/genética , Spodoptera
11.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673548

RESUMO

Even though several plants can improve the female reproductive function, the use of herbs, herbal preparations, or essential oils during pregnancy is questionable. This review is focused on the effects of some essential oils and their constituents on the female reproductive system during pregnancy and on the development of the fetus. The major concerns include causing abortion, reproductive hormone modulation, maternal toxicity, teratogenicity, and embryo-fetotoxicity. This work summarizes the important studies on the reproductive effects of essential oil constituents anethole, apiole, citral, camphor, thymoquinone, trans-sabinyl acetate, methyl salicylate, thujone, pulegone, ß-elemene, ß-eudesmol, and costus lactone, among others.


Assuntos
Genitália Feminina/efeitos dos fármacos , Óleos Voláteis/toxicidade , Animais , Monoterpenos Bicíclicos , Cânfora , Feminino , Humanos , Gravidez , Terpenos
12.
J Struct Biol ; 210(3): 107496, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32224091

RESUMO

An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin in several bacterial species and although this activity was investigated, no such activity was observed. The crystal structure of the Paenibacillus esterase, here denoted as PnbE, was determined at 1.32 Å resolution, showing high similarity to Nicotiana tabacum salicylic acid binding protein 2 from the protein database. Structural similarities between these two structures across the core domains and key catalytic residues were observed, with superposition of catalytic residues giving an RMSD of 0.5 Å across equivalent Cα atoms. Conversely, the cap domains of PnbE and Nicotiana tabacum SABP2 showed greater divergence with decreased flexibility in the PnbE cap structure. Activity of PnbE as a putative methyl salicylate esterase was supported with binding studies showing affinity for salicylic acid and functional studies showing methyl salicylate esterase activity. We hypothesise that this activity could enrich Paenibacillus sp. within the rhizosphere by increasing salicylic acid concentrations within the soil.


Assuntos
Hidrolases/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo , Hidrolases/genética , Paenibacillus/genética , Rizosfera , Ácido Salicílico/metabolismo , Nicotiana/genética
13.
Planta ; 252(6): 103, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185761

RESUMO

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Assuntos
Citrus , Expressão Gênica , Metiltransferases , Salicilatos , Xylella , Citrus/genética , Citrus/microbiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilização , Xylella/fisiologia
14.
Biosci Biotechnol Biochem ; 84(9): 1780-1787, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479137

RESUMO

Salicylic acid (SA) and methyl salicylate (MeSA) are synthesized in many plants and are crucial components that establish their disease responses. The metabolism of airborne MeSA to SA has been previously reported. In this report, it was found that SA glucose ester (SAGE), ether (SAG), and salicyloyl-L-aspartic acid (SA-Asp) are metabolites of airborne MeSA. Furthermore, it was found that airborne MeSA was able to increase the endogenous amount of rosmarinic acid in Perilla frutescens, which is known as one of the functional components that contributes to the maintenance of human health.


Assuntos
Ar/análise , Plantas/metabolismo , Salicilatos/metabolismo , Glucose/metabolismo
15.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374575

RESUMO

Topical anti-inflammatory and analgesic effect for the treatment of rheumatoid arthritis is of major interest because of their fewer side effects compared to oral therapy. The purpose of this study was to prepare different types of topical formulations (ointments and gels) containing synthetic and natural anti-inflammatory agents with different excipients (e.g.,: surfactants, gel-forming) for the treatment of rheumatoid arthritis. The combination of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), diclofenac sodium, a topical analgesic agent methyl salicylate, and a lyophilized extract of Calendula officinalis with antioxidant effect were used in our formulations. The aim was to select the appropriate excipients and dosage form for the formulation in order to enhance the diffusion of active substances and to certify the antioxidant, analgesic, and anti-inflammatory effects of these formulations. To characterize the physicochemical properties of the formulations, rheological studies, and texture profile analysis were carried out. Membrane diffusion and permeability studies were performed with Franz-diffusion method. The therapeutic properties of the formulations have been proven by an antioxidant assay and a randomized prospective study that was carried out on 115 patients with rheumatoid arthritis. The results showed that the treatment with the gel containing diclofenac sodium, methyl salicylate, and lyophilized Calendula officinalis as active ingredients, 2-propenoic acid homopolymer (Synthalen K) as gel-forming excipient, distilled water, triethanolamine, and glycerol had a beneficial analgesic and local anti-inflammatory effect.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Diclofenaco/uso terapêutico , Excipientes/química , Géis/química , Extratos Vegetais/farmacologia , Administração Tópica , Calendula/química , Feminino , Flores/química , Humanos , Masculino , Pessoa de Meia-Idade , Pomadas , Estudos Prospectivos
16.
J Chem Ecol ; 45(3): 298-312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607684

RESUMO

Herbivorous insects are important problems in cranberry (Vaccinium macrocarpon Ait.) production. The use of chemical pesticides is common practice, but beneficial insects such as natural enemies of herbivores (e.g. predators and parasitoids) could be affected as well. Therefore, we studied the defensive mechanisms that cranberry plants use to combat pests, focusing on herbivore-induced plant volatiles (HIPVs), which can be used to recruit predators and parasitoids foraging for prey or hosts. Then, we used synthetic HIPVs to test the attraction of natural enemies. In a greenhouse, we assessed nine cranberry genotypes for expression of genes involved in HIPV biosynthesis and/or emission of HIPVs. In an experimental field, we assessed whether baiting traps with individual or combinations of HIPVs increased attractiveness to natural enemies. The results showed that different cranberry genotypes vary in their emission of monoterpenes and sesquiterpenes but not in their expression of two genes associated with terpene biosynthesis, α-humulene/ß-caryophyllene synthase and (3S,6E)-nerolidol/R-linalool synthase. Induction with methyl jasmonate or herbivore (gypsy moth, Lymantria dispar L.) feeding increased the expression of these genes and emission of HIPVs. The HIPV methyl salicylate (MeSA), alone or in combination with other HIPVs, increased syrphid attraction by 6-fold in the field, while (Z)-3-hexenyl acetate and MeSA repelled ladybeetles and megaspilids, respectively. Linalool and ß-caryophyllene elicited no behavioral responses of natural enemies. Elucidating the mechanisms of pest resistance, as well as experimentally augmenting plant defenses such as HIPVs, may contribute to the development of more sustainable pest management practices in crops, including cranberries.


Assuntos
Expressão Gênica , Genótipo , Herbivoria , Fenótipo , Vaccinium macrocarpon/metabolismo , Compostos Orgânicos Voláteis/metabolismo
17.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500198

RESUMO

Glycosides are ubiquitous plant secondary metabolites consisting of a non-sugar component called an aglycone, attached to one or more sugars. One of the most interesting aglycones in grapes and wine is methyl salicylate (MeSA), an organic ester naturally produced by many plants, particularly wintergreens. To date, nine different MeSA glycosides from plants have been reported, mainly spread over the genera Gaultheria, Camellia, Polygala, Filipendula, and Passiflora. From a sensorial point of view, MeSA has a balsamic-sweet odor, known as Wintergreen. MeSA was found in Vitis riparia grapes, in Vitis vinifera sp. and in the Frontenac interspecific hybrid. We found that the MeSA glycosides content in Verdicchio wines and in some genetically related varieties (Trebbiano di Soave and Trebbiano di Lugana) was very high. In order to understand which glycosides were present in wine, the methanolic extract of Verdicchio wine was injected into a UPLC-Q-TOF-HDMS and compared to the extracts of different plants rich in such glycosides. Using pure standards, we confirmed the existence of two glycosides in wine: MeSA 2-O--d-glucoside and MeSA 2-O--d-xylopyranosyl (1-6) -d-glucopyranoside (gaultherin). For the first time, we also tentatively identified other diglycosides in wine: MeSA 2-O--l-arabinopyranosyl (1-6)--d-glucopyranoside (violutoside) and MeSA 2-O--d-apiofuranosyl (1-6)--d-glucopyranoside (canthoside A), MeSA 2-O--d-glucopyranosyl (1-6)-O--d-glucopyranoside (gentiobioside) and MeSA 2-O--l-rhamnopyranosyl (1-6)--d-glucopyranoside (rutinoside). Some of these glycosides have been isolated from Gaultheria procumbens leaves by preparative liquid chromatography and structurally annotated by 1H- and 13C-NMR analysis. Two of the peaks isolated from Gaultheria procumbens leaves, namely MeSA sambubioside and MeSA sophoroside, were herein observed for the first time. Six MeSA glycosides were quantified in 64 Italian white wines, highlighting the peculiar content and pattern in Verdicchio wines and related cultivars. The total concentration in bound and free MeSA in Verdicchio wines varied in the range of 456-9796 g/L and 5.5-143 g/L, respectively, while in the other wines the bound and free MeSA was below 363 g/L and 12 g/L, respectively. As this compound's olfactory threshold is between 50 and 100 g/L, our data support the hypothesis that methyl salicylate can contribute to the balsamic scent, especially in old Verdicchio wines.


Assuntos
Glicosídeos/química , Salicilatos/química , Vitis/química , Vinho/análise , Cromatografia Líquida , Dissacarídeos/química , Dissacarídeos/isolamento & purificação , Glicosídeos/classificação , Glicosídeos/isolamento & purificação , Humanos , Extratos Vegetais/química , Folhas de Planta/química , Salicilatos/classificação , Salicilatos/isolamento & purificação
18.
J Chem Ecol ; 44(1): 18-28, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29250744

RESUMO

In the fig-fig wasp nursery pollination system, parasitic wasps, such as gallers and parasitoids that oviposit from the exterior into the fig syconium (globular, enclosed inflorescence) are expected to use a variety of chemical cues for successful location of their hidden hosts. Behavioral assays were performed with freshly eclosed naive galler wasps. Syconia with different oviposition histories, i.e. with or without prior oviposition, were presented to wasps in no-choice assays and the time taken to the first oviposition attempt was recorded. The wasps exhibited a preference for syconia previously exposed to conspecifics for oviposition over unexposed syconia. Additionally, syconia exposed to oviposition by heterospecific wasps were also preferred for oviposition over unexposed syconia indicating that wasps recognise and respond to interspecific cues. Wasps also aggregated for oviposition on syconia previously exposed to oviposition by conspecifics. We investigated chemical cues that wasps may employ in accepting an oviposition resource by analyzing syconial volatile profiles, chemical footprints left by wasps on syconia, and syconial surface hydrocarbons. The volatile profile of a syconium is influenced by the identity of wasps developing within and may be used to identify suitable host syconia at long range whereas close range preference seems to exploit wasp footprints that alter syconium surface hydrocarbon profiles. These cues act as indicators of the oviposition history of the syconium, thereby helping wasps in their oviposition decisions.


Assuntos
Polinização/fisiologia , Vespas/fisiologia , Animais , Frutas/química , Frutas/metabolismo , Frutas/parasitologia , Oviposição/fisiologia , Plantas/química , Plantas/metabolismo , Plantas/parasitologia , Simbiose , Compostos Orgânicos Voláteis/química , Vespas/crescimento & desenvolvimento
19.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642641

RESUMO

Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.


Assuntos
Imunidade Vegetal/genética , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/virologia , Luz , Imunidade Vegetal/efeitos da radiação
20.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28878062

RESUMO

Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators.


Assuntos
Afídeos , Herbivoria , Fenômenos Fisiológicos Vegetais , Comportamento Predatório , Animais , Ciclopentanos/química , Oxilipinas/química , Plantas/química , Crescimento Demográfico , Salicilatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA