RESUMO
It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.
Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
Circadian rhythm disruption leads to dysregulation of lipid metabolism, which further drive the occurrence of insulin resistance (IR). Exosomes are natural carrier systems that advantageous for cell communication. In the present study, we aimed to explore whether and how the exosomal microRNAs (miRNAs) in circulation participate in modulating skeletal muscle IR induced by circadian rhythm disruption. In the present study, 24-h constant light (12-h light/12-h light, LL) was used to establish the mouse model of circadian rhythm disruption. Bmal1 interference was used to establish the cell model of circadian rhythm disruption. And in clinical experiments, we chose a relatively large group of rhythm disturbance-shift nurses. We showed that LL-induced circadian rhythm disruption led to increased body weight and visceral fat volume, as well as occurrence of IR in vivo. Furthermore, exosomal miR-22-3p derived from adipocytes in the context of circadian rhythm disruption induced by Bmal1 interference could be uptaken by skeletal muscle cells to promote IR occurrence in vitro. Moreover, miR-22-3p in circulation was positively correlated with the clinical IR-associated factors. Collectively, these data showed that exosomal miR-22-3p in circulation may act as potential biomarker and therapeutic target for skeletal muscle IR, contributing to the prevention of diabetes in the context of rhythm disturbance.
Assuntos
Ritmo Circadiano , Exossomos , Resistência à Insulina , MicroRNAs , Animais , Camundongos , Adipócitos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismoRESUMO
BACKGROUND: Neuroinflammation is a characteristic pathological change of Alzheimer's Diseases (AD). Microglia have been reported to participate in inflammatory responses within the central nervous system. However, the mechanism of microglia released exosome (EXO) contribute to communication within AD microenvironment remains obscure. METHODS: The interaction between microglia and AD was investigated in vitro and in vivo. RNA-binding protein immunoprecipitation (RIP) was used to investigate the mechanisms of miR-223 and YB-1. The association between microglia derived exosomal YB-1/miR-223 axis and nerve cell damage were assessed using Western blot, immunofluorescence, RT-PCR, ELISA and wound healing assay. RESULTS: Here, we reported AD model was responsible for the M1-like (pro-inflammatory) polarization of microglia which in turn induced nerve cell damage. While M2-like (anti-inflammatory) microglia could release miR-223-enriched EXO which reduced neuroinflammation and ameliorated nerve damage in AD model in vivo and in vitro. Moreover, YB-1 directly interacted with miR-223 both in cell and EXO, and participated in microglia exosomal miR-223 loading. CONCLUSION: These results indicate that anti-inflammatory microglia-mediated neuroprotection form inflammatory damage involves exporting miR-223 via EXO sorted by YB-1. Consequently, YB-1-mediated microglia exosomal sorting of miR-223 improved the nerve cell damage repair, representing a promising therapeutic target for AD.
Assuntos
Doença de Alzheimer , Cognição , Exossomos , MicroRNAs , Microglia , Proteína 1 de Ligação a Y-Box , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Sequência de Bases , Modelos Animais de Doenças , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Fatores de Transcrição , Proteína 1 de Ligação a Y-Box/metabolismoRESUMO
BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.
Assuntos
Transportador 1 de Cassete de Ligação de ATP , Gotículas Lipídicas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Traumatismos da Medula Espinal , Regulação para Cima , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Microglia/patologia , Animais , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Gotículas Lipídicas/metabolismo , Camundongos , Linhagem Celular , Masculino , Metabolismo dos Lipídeos/genéticaRESUMO
BACKGROUND: The growing understanding of cancer biology and the establishment of new treatment modalities has not yielded the expected results in terms of survival for Laryngeal Squamous Cell Cancer (LSCC). Early diagnosis, as well as prompt identification of patients with high risk of relapse would ensure greater chance of therapeutic success. However, this goal remains a challenge due to the absence of specific biomarkers for this neoplasm. METHODS: Serum samples from 45 LSCC patients and 23 healthy donors were collected for miRNA expression profiling by TaqMan Array analysis. Additional 20 patients and 42 healthy volunteers were included for the validation set, reaching an equal number of clinical samples for each group. The potential diagnostic ability of the such identified three-miRNA signature was confirmed by ROC analysis. Moreover, each miRNA was analyzed for the possible correlation with HNSCC patients' survival and TNM status by online databases Kaplan-Meier (KM) plotter and OncomiR. In silico analysis of common candidate targets and their network relevance to predict shared biological functions was finally performed by PANTHER and GeneMANIA software. RESULTS: We characterized serum miRNA profile of LSCC patients identifying a novel molecular signature, including miR-223, miR-93 and miR-532, as circulating marker endowed with high selectivity and specificity. The oncogenic effect and the prognostic significance of each miRNA was investigated by bioinformatic analysis, denoting significant correlation with OS. To analyse the molecular basis underlying the pro-tumorigenic role of the signature, we focused on the simultaneously regulated gene targets-IL6ST, GTDC1, MAP1B, CPEB3, PRKACB, NFIB, PURB, ATP2B1, ZNF148, PSD3, TBC1D15, PURA, KLF12-found by prediction tools and deepened for their functional role by pathway enrichment analysis. The results showed the involvement of 7 different biological processes, among which inflammation, proliferation, migration, apoptosis and angiogenesis. CONCLUSIONS: In conclusion, we have identified a possible miRNA signature for early LSCC diagnosis and we assumed that miR-93, miR-223 and miR-532 could orchestrate the regulation of multiple cancer-related processes. These findings encourage the possibility to deepen the molecular mechanisms underlying their oncogenic role, for the desirable development of novel therapeutic opportunities based on the use of short single-stranded oligonucleotides acting as non-coding RNA antagonists in cancer.
Assuntos
Carcinoma de Células Escamosas , Biologia Computacional , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica , Neoplasias Laríngeas , MicroRNAs , Humanos , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/diagnóstico , MicroRNAs/sangue , MicroRNAs/genética , Masculino , Feminino , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Curva ROC , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estimativa de Kaplan-Meier , Estudos de Casos e Controles , Redes Reguladoras de Genes , IdosoRESUMO
Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.
Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , MicroRNAs , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Células Cultivadas , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Consolidação da Fratura , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
INTRODUCTION: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of allergic rhinitis (AR). The current investigation is focused on elucidating the functional impact of a specific lncRNA, FGD5 antisense RNA 1 (FGD5-AS1), on the development and progression of AR through its interaction with miR-223-3p. METHODS: An experimental framework for AR was constructed in both cellular and animal models. Quantitative assessment of FGD5-AS1, miR-223-3p, and COX11 mRNA expression was conducted using real-time quantitative reverse transcription PCR. The expression of inflammatory factors, immunoglobulin E, LTC4, and ECP, was examined using ELISA. Apoptosis in human nasal epithelial cells was assessed by the flow cytometry method. The protein expression of COX11 was examined using Western blotting. Nasal mucosal function was further evaluated by hematoxylin and eosin staining. Furthermore, bioinformatics evaluations, dual-luciferase reporter assays, and a series of experimental procedures unveiled a putative competitive endogenous RNA regulatory mechanism. RESULTS: We found the expression of lncRNA FGD5-AS1 was decreased in AR. In vitro lncRNA FGD5-AS1 attenuated the production of inflammatory cytokines in nasal epithelial cells. Furthermore, elevated FGD5-AS1 expression significantly alleviated AR symptoms by reducing nasal epithelial apoptosis and inflammation. MiR-223-3p was identified as a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of COX11 mRNA. Subsequent experiments confirmed that FGD5-AS1 regulated AR through the miR-223-3p/COX11 axis, thereby inhibiting inflammation. CONCLUSION: The FGD5-AS1/miR-223-3p/COX11 axis plays a pivotal role in the pathogenesis of AR, suggesting that FGD5-AS1 could serve as a potential diagnostic biomarker and therapeutic target for AR.
Assuntos
MicroRNAs , RNA Longo não Codificante , Rinite Alérgica , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inflamação/genética , Rinite Alérgica/genética , RNA Mensageiro , Proliferação de Células , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
RESEARCH QUESTION: Does human chorionic gonadotrophin (HCG) influence endometrial receptivity and epithelial-mesenchymal transition (EMT) via the FoxO1/miR223-5p/Wnt5α pathway? DESIGN: This study aimed to establish the co-culture system of human embryonic trophoblast cell line (HTR-8-Svneo) cells and human endometrial epithelial cell line (HEEC) cells. The expression of Wnt5α protein and EMT-related proteins in HTR-8-Svneo and HEEC cells treated in a gradient-dependent manner using HCG and exosome inhibitor GW4869 were detected in the co-culture system. RESULTS: In the HTR-8-Svneo/HEEC co-culture system, miR223-5p in HEEC cells increased significantly with induction of HTR-8-Svneo cells by 100 IU/ml HCG for 48 h (Pâ¯=â¯0.046), and Wnt5α protein decreased significantly in HEEC cells (Pâ¯=â¯0.021). Pretreatment of HTR-8-Svneo cells with GW4869, and knockdown of FoxO1 in HTR-8-Svneo cells, significantly inhibited the above effects of HCG on miR223-5p and Wnt5α expression in HEEC cells in the HTR-8-Svneo/HEEC co-culture system. HTR-8-Svneo cells induced with 100 IU/ml HCG for 48 h significantly enhanced the logarithmic phase proliferation activity of HEEC cells in the co-culture system (P < 0.001), while knockdown of FoxO1 in HTR-8-Svneo cells and inhibition of miR223-5p in HEEC cells suppressed proliferation of HEEC cells in the HTR-8-Svneo/HEEC co-culture system (P < 0.001). CONCLUSIONS: HCG exposure induces HTR-8-Svneo cells to up-regulate miR223-5p expression, which enters HEEC cells in the co-culture system through the exosomal pathway, and inhibits Wnt5α expression and the progress of EMT.
Assuntos
Compostos de Anilina , Compostos de Benzilideno , MicroRNAs , Trofoblastos , Humanos , Movimento Celular , Linhagem Celular , Transição Epitelial-Mesenquimal , Proliferação de Células , MicroRNAs/metabolismoRESUMO
BACKGROUND: Myocardial cell death is the hallmark of myocardial infarction. In the process of myocardial injury, platelets contribute to the pathogenesis by triggering intense inflammatory responses. Yet, it is still unclear if platelets regulate cardiomyocyte death directly, thereby exacerbating myocardial injury in myocardial infarction. METHODS: We describe a mechanism underlying the correlative association between platelets accumulation and myocardial cell death by using myocardial infarction mouse model and patient specimens. RESULTS: Myocardial infarction induces platelets internalization, resulting in the release of miR-223-3p, a platelet-enriched miRNA. By targeting the ACSL3, miR-223-3p delivered by internalized platelets cause the reduction of stearic acid-phosphatidylcholine in cardiomyocytes. The presence of stearic acid-phosphatidylcholine protects cardiomyocytes against ferroptosis. CONCLUSIONS: Our work reveals a novel mechanism of platelet-mediated myocardial injury, highlighting antiplatelet therapies could potentially represent a multimechanism treatment of myocardial infarction, and implying ferroptosis being considered as novel target for therapeutics.
Assuntos
Ferroptose , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Plaquetas/metabolismo , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Morte Celular , Miócitos Cardíacos/metabolismoRESUMO
AIM: This study aimed to evaluate the miR-223-5p expression in patients with spinal cord injury (SCI) and to determine its role in the pathogenesis of SCI. METHODS: The serum miR-223-5p levels were analyzed using quantitative real-time polymerase chain reaction. The diagnostic accuracy of miR-223-5p was evaluated using the receiving operating characteristic curves. LPS-induced PC12 cells were established as an in vitro inflammatory cell model. Cell apoptosis, inflammation and oxidative stress were examined. The SCI rat model was constructed to evaluate the effects of miR-223-5p on inflammatory response and motor function in rats. RESULTS: MiR-223-5p expression was upregulated in SCI patients. MiR-223-5p expression in the complete SCI group was significantly higher than that in incomplete SCI group. ROC analysis showed that miR-223-5p can distinguish SCI patients from healthy volunteers. In vitro experiments demonstrated that LPS upregulated apoptosis and inflammation in PC12 cells. Treatment with miR-223-5p inhibitor alleviated the changes in LPS-induced PC12 cells . Inhibition of miR-223-5p can alleviate the activation of inflammatory response and the effects of SCI on the motor function in rats. CONCLUSIONS: MiR-223-5p is a potential diagnostic marker for SCI, and it can promote the SCI progression by regulating nerve cell survival, inflammation, and oxidative stress.
Assuntos
Apoptose , Inflamação , MicroRNAs , Estresse Oxidativo , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , MicroRNAs/genética , Animais , Ratos , Humanos , Células PC12 , Masculino , Inflamação/genética , Apoptose/genética , Feminino , Adulto , Pessoa de Meia-Idade , Modelos Animais de Doenças , Ratos Sprague-Dawley , Biomarcadores , LipopolissacarídeosRESUMO
Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.
Assuntos
Regulação da Expressão Gênica , MicroRNAs , Gases em Plasma , Pele , MicroRNAs/genética , Animais , Camundongos , Pele/metabolismo , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cicatrização/efeitos dos fármacos , Transdução de Sinais , Sistema Imunitário/metabolismoRESUMO
Numerous studies have shown that the M2 polarization of alveolar macrophages (AM) plays a protective role in acute lung injury (ALI). Mesenchymal stem cells (MSCs) secreted exosomes have been reported to be involved in inflammatory diseases by the effects of polarized M1/M2 macrophage populations. However, whether bone marrow mesenchymal stem cells (BMMSCs) derived exosomes could protect from ALI and its mechanisms are still unclear. Here, we explored the role of exosomes from BMMSC in rat AM polarization and the lipopolysaccharide- (LPS-) induced ALI rat model. Furthermore, the levels of exosomal miR-223 in BMMSCs were measured by RT-qPCR. Additionally, miR-223 mimics and its inhibitors were used to verify the vital role of miR-223 of BMMSCs-derived exosomes in the polarization of M2 macrophages. The results showed that BMMSCs-derived exosomes were taken up by the AM. Exosomes derived from BMMSCs promoted M2 polarization of AM in vitro. BMMSCs exosomes effectively mitigated pathological injuries, lung edema, and the inflammation of rats from LPS-induced ALI, accompanied by an increase of M2 polarization of AM in lung tissue. Interestingly, we also found that miR-223 was enriched in BMMSCs-derived exosomes, and overexpression of miR-223 in BMMSCs-derived exosomes promoted M2 polarization of AM while depressing miR-223 showed opposite effects in AM. The present study demonstrated that BMMSCs-derived exosomes triggered alveolar M2 polarization to improve inflammation by transferring miR-223, which may provide new therapeutic strategies in ALI.
Assuntos
Lesão Pulmonar Aguda , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Macrófagos Alveolares , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , InflamaçãoRESUMO
BACKGROUND: Acute coronary syndrome (ACS) is a serious cardiovascular disease that severely affects the quality of life and longevity of patients. MicroRNAs (miRNAs) play a key role in the progression of ACS with significant clinical value. The aim of this study was to examine the clinical value of miR-223-5p in ACS and on the occurrence of major adverse cardiovascular events (MACE) after percutaneous coronary intervention (PCI). METHODS: The plasma expression of miR-223-5p was detected by RT-qPCR. The correlation of miR-223-5p and cTnI or Gensini score was shown by the Pearson method. Risk factors for the development of ACS were analyzed by multivariate logistic regression. The efficacy of miR-223-5p in identifying patients with ACS was shown by ROC curve. The predictive value of miR-223-5p for MACE development in ACS patients within 6 months after PCI was assessed by Kaplan-Meier curve and multivariate Cox regression. RESULTS: miR-223-5p levels were markedly elevated in ACS patients. miR-223-5p was found to be positively related to cTnI or Gensini score. miR-223-5p was a risk factor for ACS and significantly identified patients with ACS. MACE was more likely to occur after PCI in patients with high miR-223-5p levels, and miR-223-5p was an independent prognostic indicator of MACE. CONCLUSIONS: miR-223-5p had diagnostic value for ACS and predicted MACE after PCI.
Assuntos
Síndrome Coronariana Aguda , MicroRNAs , Intervenção Coronária Percutânea , Valor Preditivo dos Testes , Humanos , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/mortalidade , Síndrome Coronariana Aguda/genética , Masculino , Intervenção Coronária Percutânea/efeitos adversos , Feminino , Pessoa de Meia-Idade , MicroRNAs/sangue , MicroRNAs/genética , Idoso , Resultado do Tratamento , Fatores de Tempo , Biomarcadores/sangue , Fatores de Risco , Medição de Risco , Regulação para CimaRESUMO
OBJECTIVES: To evaluate the diagnostic value of plasma exosomal miR-223 and its combination with CA125 for the diagnosis of early-stage epithelial ovarian cancer (EOC). PATIENTS AND METHODS: Exosomes derived from the plasma of 78 EOC patients, 40 patients with epithelial benign ovarian tumors, and 52 healthy participants were isolated using the ultracentrifugation method and identified by transmission electron microscopy (TEM) and western blot. RESULTS: The expression of exosomal miR-223 was significantly upregulated in the plasma of EOC patients compared to that in healthy subjects and patients with benign diseases. The combination of exosomal miR-223 and CA125 from plasma had an equivalent area under the ROC curve (AUC) to CA125 alone for discriminating between EOC and non-EOC cases, including healthy subjects and benign ovarian tumors. However, the AUC value of the combination was 0.944 (95% CI: 0.899-0.990) for differentially diagnosing early-stage EOC from healthy subjects, slightly higher than that of CA125 alone (0.928, 95% CI: 0.875-0.981), with a sensitivity and specificity of 0.9784 and 0.885, respectively. CONCLUSION: Our data suggest that plasma exosomal miR-223 can be used as a complement to CA125 to increase the diagnostic power for differentiating early-stage EOC from healthy subjects.
Assuntos
Exossomos , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/diagnóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Sensibilidade e Especificidade , Exossomos/metabolismo , Exossomos/patologia , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125RESUMO
BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.
Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem CelularRESUMO
BACKGROUND: Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS: CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS: CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION: Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , MicroRNAs/genética , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , RNA Circular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Camundongos , Animais , Linhagem Celular TumoralRESUMO
BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.
Assuntos
Injúria Renal Aguda , MicroRNAs , Nefrite , Sepse , Canais de Cátion TRPM , Humanos , Injúria Renal Aguda/genética , Citocinas , Rim , Lipopolissacarídeos/toxicidade , Luciferases , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , RNA Circular/genética , Sepse/genéticaRESUMO
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão GênicaRESUMO
Acute promyelocytic leukemia (APL) is marked by a block at the promyelocyte stage. Treatments like ATRA and ATO face resistance and relapse issues. Plastrum testudinis, a traditional Chinese medicine, may offer therapeutic potential. This study investigated xtr-miR-22-3p from P. testudinis for treating APL. High expression of xtr-miR-22-3p was confirmed, with target prediction indicating interactions with key genes, including PML. xtr-miR-22-3p reduced HL-60 leukemia cell growth, altered the cell cycle, and selectively inhibited HL-60 proliferation while promoting BMSC growth, suggesting its potential as a targeted APL therapy.
RESUMO
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.