Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329465

RESUMO

During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating a role in tailored environmental acclimatization. This hypothesis has been validated experimentally and theoretically during the last decades. Recent developments of dynamic roGFP-based in vivo sensors for H2O2 and the redox potential of the glutathione pool paved the way for dissecting the kinetics changes in these decisive parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review exemplarily describes the role of the redox- and ROS-dependent regulatory network in realising the proper response to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen, or phosphate shortage as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox regulatory and ROS network, but the present state of knowledge also pinpoints to pressing open questions concerning the translation of redox regulation to environmental acclimatization.

2.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041240

RESUMO

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Animais , Resistência à Doença , Edwardsiella ictaluri , Ferro/farmacologia , Ferro da Dieta , Hematócrito , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
3.
Ecotoxicol Environ Saf ; 269: 115783, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061081

RESUMO

Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (AsV) with Pi, the association with S. indica promotes plant growth under arsenic (As) stress by reducing As bioavailability through adsorption, accumulation, and precipitation within the fungus. However, the capacity of S. indica to enhance Pi accumulation and utilization under As stress remains unexplored. Axenic studies revealed that As supply significantly reduces intracellular ACPase activity in S. indica, while extracellular ACPase remains unaffected. Further investigations using Native PAGE and gene expression studies confirmed that intracellular ACPase (isoform2) is sensitive to As, whereas extracellular ACPase (isoform1) is As-insensitive. Biochemical analysis showed that ACPase (isoform1) has a Km of 0.5977 µM and Vmax of 0.1945 Unit/min. In hydroponically cultured tomato seedlings, simultaneous inoculation of S. indica with As on the 14thday after seed germination led to hyper-colonization, increased root/shoot length, biomass, and induction of ACPase expression and secretion under As stress. Arsenic-treated S. indica colonized groups (13.33 µM As+Si and 26.67 µM As+Si) exhibited 8.28-19.14 and 1.71-3.45-fold activation of ACPase in both rhizospheric media and root samples, respectively, thereby enhancing Pi availability in the surrounding medium under As stress. Moreover, S. indica (13.33 µM As+Si and 26.67 µM As+Si) significantly improved Pi accumulation in roots by 7.26 and 9.46 times and in shoots by 4.36 and 8.85 times compared to the control. Additionally, S. indica induced the expression of SiPT under As stress, further improving Pi mobilization. Notably, fungal colonization also restricted As mobilization from the hydroponic medium to the shoot, with a higher amount of As (191.01 ppm As in the 26.67 µM As+Si group) accumulating in the plant's roots. The study demonstrates the performance of S. indica under As stress in enhancing Pi mobilization while limiting As uptake in the host plant. These findings provide the first evidence of the As-Pi interaction in the AM-like fungus S. indica, indicating reduced As uptake and regulation of PHO genes (ACPase and SiPT genes) to increase Pi acquisition. These data also lay the foundation for the rational use of S. indica in agricultural practices.


Assuntos
Fosfatase Ácida , Arsênio , Basidiomycota , Micorrizas , Arsênio/toxicidade , Arsênio/metabolismo , Basidiomycota/metabolismo , Micorrizas/fisiologia , Fosfatos/farmacologia , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Fosfatase Ácida/metabolismo , Fosfatase Ácida/farmacologia
4.
Ecotoxicol Environ Saf ; 281: 116648, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964065

RESUMO

The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.

5.
New Phytol ; 239(3): 992-1004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36727308

RESUMO

The elevation of CO2 in the atmosphere increases plant biomass but decreases their mineral content. The genetic and molecular bases of these effects remain mostly unknown, in particular in the root system, which is responsible for plant nutrient uptake. To gain knowledge about the effect of elevated CO2 on plant growth and physiology, and to identify its regulatory in the roots, we analyzed genome expression in Arabidopsis roots through a combinatorial design with contrasted levels of CO2 , nitrate, and iron. We demonstrated that elevated CO2 has a modest effect on root genome expression under nutrient sufficiency, but by contrast leads to massive expression changes under nitrate or iron deficiencies. We demonstrated that elevated CO2 negatively targets nitrate and iron starvation modules at the transcriptional level, associated with a reduction in high-affinity nitrate uptake. Finally, we inferred a gene regulatory network governing the root response to elevated CO2 . This network allowed us to identify candidate transcription factors including MYB15, WOX11, and EDF3 which we experimentally validated for their role in the stimulation of growth by elevated CO2 . Our approach identified key features and regulators of the plant response to elevated CO2 , with the objective of developing crops resilient to climate change.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Redes Reguladoras de Genes , Plantas/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo
6.
J Exp Bot ; 74(19): 6131-6144, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279530

RESUMO

Plant growth and development depend on sufficient nutrient availability in soils. Agricultural soils are generally nitrogen (N) deficient, and thus soils need to be supplemented with fertilizers. Ammonium (NH4+) is a major inorganic N source. However, at high concentrations, NH4+ becomes a stressor that inhibits plant growth. The cause of NH4+ stress or toxicity is multifactorial, but the interaction of NH4+ with other nutrients is among the main determinants of plants' sensitivity towards high NH4+ supply. In addition, NH4+ uptake and assimilation provoke the acidification of the cell external medium (apoplast/rhizosphere), which has a clear impact on nutrient availability. This review summarizes current knowledge, at both the physiological and the molecular level, of the interaction of NH4+ nutrition with essential mineral elements that are absorbed as cations, both macronutrients (K+, Ca2+, Mg2+) and micronutrients (Fe2+/3+, Mn2+, Cu+/2+, Zn2+, Ni2+). We hypothesize that considering these nutritional interactions, and soil pH, when formulating fertilizers may be key in order to boost the use of NH4+-based fertilizers, which have less environmental impact compared with nitrate-based ones. In addition, we are convinced that better understanding of these interactions will help to identify novel targets with the potential to improve crop productivity.

7.
Oecologia ; 201(3): 841-852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847886

RESUMO

There is little evidence on the extent that multiple factors simultaneously limit ecosystem function of grasslands with year-round production. Here we test if multiple factors simultaneously limit (i.e., more than one factor at a time) grassland functioning in different seasons and how they interacted with N availability. In a Flooding Pampa grassland, we ran a separate factorial experiment in spring, summer, and winter with several treatments: control, mowing, shading, P addition, watering (only in summer), and warming (only in winter), each of them crossed with two nitrogen treatments: control and N addition. Grassland functioning was assessed by aboveground net primary productivity (ANPP), green and standing dead biomass, and N content at the species group level. Out of 24 potential cases (three seasons by eight response variables), 13 corresponded to just one limiting factor, 4 to multiple limiting factors, and the other 7 to no evidence of limitation. In conclusion, grassland functioning in each season was most often limited by just one factor, while multiple limiting factors were rarer. Nitrogen was the prevailing limiting factor. Our study expands our knowledge of limitations imposed by factors associated with disturbance and stress, such as mowing, shading, water availability, and warming in grasslands with year-round production.


Assuntos
Ecossistema , Pradaria , Biomassa , Estações do Ano , Água , Nitrogênio , Poaceae
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769147

RESUMO

Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess. Furthermore, their relation with water uptake and transport mediated through aquaporins is reviewed. In this way, the increases of phenolic compounds and glucosinolate synthesis have been related to primary responses to abiotic stress and induction of resistance. Thus, their metabolic pathways, root exudation, and external application are related to internal cell and tissue movement, with a lack of information in this latter aspect.


Assuntos
Glucosinolatos , Água , Água/metabolismo , Glucosinolatos/metabolismo , Plantas/metabolismo , Transporte Biológico , Estresse Fisiológico
9.
Arch Anim Nutr ; 77(5): 403-419, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38009002

RESUMO

The aim was to evaluate the animal response and the chemical and physical changes of free-choice mineral mixtures fed to grazing cattle. Growing beef cattle were fed either powder (POW) or agglomerated (AGL) mineral mixtures in three different experiments (Exp.), carried out in pastures of Brachiaria grass. In Exp. 1 and 2, the mineral mixtures were disposed in unsheltered troughs (POWun vs. AGLun), being delivered once (D0, Exp.1) or twice (D0 and D8, Exp. 2), throughout 14-day periods. In Exp. 3, POWun and AGLun were additionally compared to POW in sheltered troughs (POWshe), and the mineral mixtures were disposed in D0, throughout 21-day periods. Non-consumed supplement was removed and sampled on D14 (Exp. 1 and 2) or D21 (Exp. 3). Evaluations included average daily body weight gain (ADG), daily disappearance of the supplement (DSD), penetration force of the supplement mass, faecal chemical composition and serum levels of Ca, P and Mg. In Exp. 1, no effects were observed on ADG and faecal mineral concentrations, however, changes in mineral concentrations and a 40% reduction in Na concentration in the supplement were observed, compared to the initial concentration. AGLun had a lower penetration force. In Exp. 2, there were no effects on DSD and faecal mineral concentrations. POWun showed a smaller reduction in Na content compared to AGLun, and AGLun showed lower penetration force. In Exp. 3, the treatments did not affect ADG, but there was a trend towards higher DSD and serum phosphorus (P) concentration for AGLun (p = 0.08). Higher faecal Na concentration was observed for AGLun and higher Na concentration occurred in non-consumed mixture of POWshe. Mineral supplements offered in uncovered troughs showed altered chemical and physical characteristics, with possible effects on supplement intake. However, the general changes are unlikely to alter animal performance.


Assuntos
Ração Animal , Dieta , Bovinos , Animais , Pós , Dieta/veterinária , Ração Animal/análise , Minerais , Suplementos Nutricionais , Aumento de Peso
10.
Physiol Mol Biol Plants ; 29(5): 755-767, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363416

RESUMO

Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.

11.
BMC Plant Biol ; 22(1): 490, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253754

RESUMO

BACKGROUND: Evaluation of native soil microbes is a realistic way to develop bio-agents for ecological restoration. Soil alkalinity, which has a high pH, is one of the most common concerns in dry and semi-arid climates. Alkaline soils face problems due to poor physical properties, which affect plant growth and crop production. A pot experiment was carried out to investigate the impact of native mycorrhizal fungi (AMF) on the wheat plant (Triticum aestivum L.) under two levels of alkalinity stress -T1 (37 mM NaHCO3), T2 (74 mM NaHCO3) - at two developmental stages (the vegetative and productive stages). RESULTS: Alkalinity stress significantly inhibited the germination percentage, plant biomass, photosynthetic pigments, and some nutrients (K, N, and P). Mycorrhizal inoculation improved growth parameters and productivity of wheat-stressed plants. However, lipid peroxidation was significantly lowered in mycorrhizal-inoculated plants compared to non-inoculated plants. Catalase and peroxidase were inhibited in wheat leaves and roots by alkalinity, while mycorrhiza promoted the activity of these enzymes. CONCLUSION: The results of this study demonstrated that alkalinity stress had highly negative effects on some growth parameters of the wheat plant, while AMF inoculation attenuated these detrimental effects of alkalinity stress at two stages by reducing the pH and Na concentration and increasing the availability of P and the productivity of wheat in particular crop yield parameters.


Assuntos
Micorrizas , Catalase , Raízes de Plantas/microbiologia , Solo/química , Triticum
12.
J Exp Bot ; 73(17): 5903-5917, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35767844

RESUMO

Plant mineral nutrition is critical for agricultural productivity and for human nutrition; however, the availability of mineral elements is spatially and temporally heterogeneous in many ecosystems and agricultural landscapes. Nutrient imbalances trigger intricate signalling networks that modulate plant acclimation responses. One signalling agent of particular importance in such networks is phytomelatonin, a pleiotropic molecule with multiple functions. Evidence indicates that deficiencies or excesses of nutrients generally increase phytomelatonin levels in certain tissues, and it is increasingly thought to participate in the regulation of plant mineral nutrition. Alterations in endogenous phytomelatonin levels can protect plants from oxidative stress, influence root architecture, and influence nutrient uptake and efficiency of use through transcriptional and post-transcriptional regulation; such changes optimize mineral nutrient acquisition and ion homeostasis inside plant cells and thereby help to promote growth. This review summarizes current knowledge on the regulation of plant mineral nutrition by melatonin and highlights how endogenous phytomelatonin alters plant responses to specific mineral elements. In addition, we comprehensively discuss how melatonin influences uptake and transport under conditions of nutrient shortage.


Assuntos
Melatonina , Ecossistema , Humanos , Minerais , Nutrientes , Raízes de Plantas , Plantas
13.
J Exp Bot ; 73(11): 3569-3583, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35304891

RESUMO

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomassa , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
14.
Ann Bot ; 129(6): 669-678, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35247265

RESUMO

BACKGROUND AND AIMS: Many terrestrial orchids have an obligate dependence on their mycorrhizal associations for nutrient acquisition, particularly during germination and early seedling growth. Though important in plant growth and development, phosphorus (P) nutrition studies in mixotrophic orchids have been limited to only a few orchid species and their fungal symbionts. For the first time, we demonstrate the role of a range of fungi in the acquisition and transport of inorganic P to four phylogenetically distinct green-leaved terrestrial orchid species (Diuris magnifica, Disa bracteata, Pterostylis sanguinea and Microtis media subsp. media) that naturally grow in P-impoverished soils. METHODS: Mycorrhizal P uptake and transfer to orchids was determined and visualized using agar microcosms with a diffusion barrier between P source (33P orthophosphate) and orchid seedlings, allowing extramatrical hyphae to reach the source. KEY RESULTS: Extramatrical hyphae of the studied orchid species were effective in capturing and transporting inorganic P into the plant. Following 7 d of exposure, between 0.5 % (D. bracteata) and 47 % (D. magnifica) of the P supplied was transported to the plants (at rates between 0.001 and 0.097 fmol h-1). This experimental approach was capable of distinguishing species based on their P-foraging efficiency, and highlighted the role that fungi play in P nutrition during early seedling development. CONCLUSIONS: Our study shows that orchids occurring naturally on P-impoverished soils can obtain significant amounts of inorganic P from their mycorrhizal partners, and significantly more uptake of P supplied than previously shown in other green-leaved orchids. These results provide support for differences in mycorrhiza-mediated P acquisition between orchid species and fungal symbionts in green-leaved orchids at the seedling stage. The plant-fungus combinations of this study also provide evidence for plant-mediated niche differentiation occurring, with ecological implications in P-limited systems.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Orchidaceae/microbiologia , Fósforo , Plântula/microbiologia , Solo , Simbiose
15.
Appl Microbiol Biotechnol ; 106(5-6): 1895-1904, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35190845

RESUMO

Medicinal plants are important sources of biochemical compounds affecting human health. However, because large areas of the world are subjected to different stresses including salinity, it is important to find methods, which may control the growth and biochemical properties of medicinal plants in such conditions. Another aspect of cropping medicinal plants in saline soils is the alteration of their biochemical properties by stress. Due to the significance of planting medicinal plants in saline soils, the objective of the present review article is to investigate and analyze the physicochemical approaches including soil leaching, organic fertilization, mineral nutrition, ozonated water, magnetism, superabsorbent polymers, and zeolite, which may control the effects of salinity stress on the growth and biochemical properties (production of secondary metabolites) of medicinal plants. In our just-published review article, we investigated the biological approaches, which may affect the growth and biochemical properties of medicinal properties in saline soils. Although salinity stress may induce the production of biochemical products in medicinal plants, the use of physicochemical approaches is also recommendable for the improved growth and biochemical properties of medicinal plants in saline soils. More has yet to be indicated on the use of the physicochemical approaches, which may affect the growth and biochemical properties of medicinal plants in salt stress conditions. KEY POINTS: • Growth and physiological alteration of medicinal plants in salt stress conditions. • The physicochemical approaches of such alteration have been reviewed. • More has yet to be indicated on the approaches, which may affect such properties.


Assuntos
Plantas Medicinais , Solo , Humanos , Salinidade , Estresse Salino , Solo/química , Água
16.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054964

RESUMO

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.


Assuntos
Brassica napus/fisiologia , Secas , Metaboloma , Minerais/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Estresse Fisiológico/genética
17.
J Environ Manage ; 307: 114568, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078062

RESUMO

Although the response of plants to nitrogen (N) in conventional systems has been extensively described in the literature, there is a lack of information available to refine the strategic N fertilisation program required in intercropping systems to match the nutrient supply with crop demands and reduce environmental impacts on greenhouse gas emissions. Therefore, this study aims to investigate the effect of N management on the growth, production, quality, greenhouse gas emissions (GHG) and carbon footprint of a beet-arugula intercropping system during two growing seasons (winter and summer). The efficiency of N fertilisation in each season was assessed by the supply of 20 N doses, varying the amounts applied at planting and as a side dressing (0-80, 0-120, 0-160, 0-200, 0-240, 20-80, 20-120, 20-160, 20-200, 20-240, 40-80, 40-120, 40-160, 40-200, 40-240, 60-80, 60-120,60-160, 60-200 and 60-240 kg N ha-1). GHG emissions and carbon footprint were calculated and converted to CO2 equivalent (CO2 eq) utilising IPCC methodology. The height, total and marketable productivities of beet plants were 33, 31 and 34% higher in winter than in summer, respectively. Arugula plants achieved the highest performance (height, fresh mass and yield) in summer. Considering the environmental impact on global warming/climate change caused by the use of N fertilisers, total GHG emissions may range from 1723.9 to 3369.8 kg CO2eq ha-1 cycle-1 according to the N dose applied. However, based on the carbon footprint, the application of 60-120 kg N ha-1 at planting and as side dressing was the best N dose, since it reduced the carbon footprint (equivalent to 0.134 g CO2eq kcal-1 vegetables) without compromising crop yield.


Assuntos
Beta vulgaris , Gases de Efeito Estufa , Agricultura , Pegada de Carbono , Fertilização , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio/análise
18.
Plant Mol Biol ; 106(6): 555-567, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275101

RESUMO

KEY MESSAGE: Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.


Assuntos
Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Membrana/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Minerais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/metabolismo
19.
Environ Res ; 197: 111098, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826942

RESUMO

This study was carried out to determine the effect of arsenic on tomato and cabbage cultivated in sand, sandy silt, and silt soil, and irrigated with water containing arsenic at concentrations 0.05 and 0.2 mg/L. Increasing arsenic in irrigation water did not affect the photosynthetic machinery. The chlorophyll content index increased in case of all soils and was dependent on the soil nitrogen, phosphorous, and plant biomass. Arsenic concentrations of 0.05 and 0.2 mg/L did not display any phytotoxic symptoms other than reduction in biomass in some cases. In cabbage, arsenic treatment of 0.2 mg/L increased the overall plant biomass production, while in tomato there was a decrease in aerial part and fruit biomass. The biomass production of both plants treated with different concentrations of arsenic, in the three soils was in the following order: silt > sand > sandy silt. Increase of arsenic in the irrigation water resulted in increase in arsenic concentration in the root and aerial part of both plants, at the same cultivation parameters. But tomato fruits displayed a decrease in arsenic accumulation with higher arsenic treatment. In both plants, the arsenic concentration in the plant parts changed in the following order: root > aerial part > fruit. Cabbage accumulated approximately twenty-fold more arsenic in the edible part (0.10-0.25 mg/kg DW) as compared to tomato (0.006-0.011 mg/kg DW) and displayed a good correlation with soil extractable arsenic. When cabbage was cultivated in three different soils applying the same irrigation water, it accumulated arsenic in the following order: sand > sandy silt > silt (p < 0.001 at 0.05 mg/L and p < 0.01 at 0.2 mg/L arsenic treatment). In tomato, the difference in arsenic accumulation among different soil types was highly significant (p < 0.001) but the accumulation pattern varied with the arsenic treatment applied. Sandy soil with the lowest total soil arsenic (4.32 mg/kg) resulted in the highest arsenic concentration in both plants. Among all soils and plants, the transfer factors and bioaccumulation factors were higher in sandy soil, and in cabbage. The estimated daily intake and hazard quotient values for arsenic were lower than 1 in all cases, implying no non-cancerous health risks at the arsenic concentrations applied in our study. Among nutrients only P showed a slight decline with increasing arsenic concentration while all other elements (Mg, K, Ca, S, Si, Fe, Mn, Cu, Zn) did not display any significant changes.


Assuntos
Arsênio , Brassica , Poluentes do Solo , Solanum lycopersicum , Arsênio/análise , Arsênio/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Água
20.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208600

RESUMO

Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution.


Assuntos
Cumarínicos/metabolismo , Dickeya/fisiologia , Resistência à Doença , Ferro/metabolismo , Doenças das Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Suscetibilidade a Doenças , Hidroponia , Folhas de Planta/microbiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA