Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Med Biol ; 20(1): 53-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33488283

RESUMO

BACKGROUND: Pathogenic mitochondrial (mt)DNA mutations, which often cause life-threatening disorders, are maternally inherited via the cytoplasm of oocytes. Mitochondrial replacement therapy (MRT) is expected to prevent second-generation transmission of mtDNA mutations. However, MRT may affect the function of respiratory chain complexes comprised of both nuclear and mitochondrial proteins. METHODS: Based on the literature and current regulatory guidelines (especially in Japan), we analyzed and reviewed the recent developments in human models of MRT. MAIN FINDINGS: MRT does not compromise pre-implantation development or stem cell isolation. Mitochondrial function in stem cells after MRT is also normal. Although mtDNA carryover is usually less than 0.5%, even low levels of heteroplasmy can affect the stability of the mtDNA genotype, and directional or stochastic mtDNA drift occurs in a subset of stem cell lines (mtDNA genetic drift). MRT could prevent serious genetic disorders from being passed on to the offspring. However, it should be noted that this technique currently poses significant risks for use in embryos designed for implantation. CONCLUSION: The maternal genome is fundamentally compatible with different mitochondrial genotypes, and vertical inheritance is not required for normal mitochondrial function. Unresolved questions regarding mtDNA genetic drift can be addressed by basic research using MRT.

2.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824295

RESUMO

Mitochondria are energy-producing intracellular organelles containing their own genetic material in the form of mitochondrial DNA (mtDNA), which codes for proteins and RNAs essential for mitochondrial function. Some mtDNA mutations can cause mitochondria-related diseases. Mitochondrial diseases are a heterogeneous group of inherited disorders with no cure, in which mutated mtDNA is passed from mothers to offspring via maternal egg cytoplasm. Mitochondrial replacement (MR) is a genome transfer technology in which mtDNA carrying disease-related mutations is replaced by presumably disease-free mtDNA. This therapy aims at preventing the transmission of known disease-causing mitochondria to the next generation. Here, a proof of concept for the specific removal or editing of mtDNA disease-related mutations by genome editing is introduced. Although the amount of mtDNA carryover introduced into human oocytes during nuclear transfer is low, the safety of mtDNA heteroplasmy remains a concern. This is particularly true regarding donor-recipient mtDNA mismatch (mtDNA-mtDNA), mtDNA-nuclear DNA (nDNA) mismatch caused by mixing recipient nDNA with donor mtDNA, and mtDNA replicative segregation. These conditions can lead to mtDNA genetic drift and reversion to the original genotype. In this review, we address the current state of knowledge regarding nuclear transplantation for preventing the inheritance of mitochondrial diseases.


Assuntos
Genes Mitocondriais , Deriva Genética , Terapia de Substituição Mitocondrial/métodos , Técnicas de Transferência Nuclear/efeitos adversos , Oócitos/metabolismo , Edição de Genes/métodos , Humanos , Terapia de Substituição Mitocondrial/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA