Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159862

RESUMO

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


Assuntos
Motivos EF Hand , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cálcio/metabolismo , Células HEK293 , Músculo Esquelético/metabolismo , Mutação , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373902

RESUMO

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/genética , Filogenia , Genômica , Surtos de Doenças
3.
Br J Haematol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137917

RESUMO

The heterogeneity of Myelodysplastic Neoplasm (MDS) extends beyond mutational diversity to include significant ethnic variability, a factor that has been underexplored. While the development of the IPSS-M prognostic tool has advanced our understanding of MDS, its reliance on data primarily from European cohorts limits its applicability to non-European populations. Duployez et al.'s review highlighted the importance of molecular markers in MDS for personalized treatment and disease monitoring yet did not address the impact of genetic ancestry. This commentary critiques the IPSS-M's limited sample of 110 Brazilian patients, questioning its adequacy in reflecting the influence of patient ancestry on prognostic accuracy. Given the potential for differing mutation profiles and prognostic implications across diverse ethnic groups, robust genomic ancestry studies are urgently needed. These studies should stratify MDS patients by ethnic background to investigate mutation incidence and impacts, thereby validating IPSS-M and potentially identifying new prognostic markers. Incorporating ethnic diversity into prognostic models is essential for ensuring they are truly universal and inclusive, thereby improving personalized treatment and care for all MDS patients. Commentary on: Duployez and Preudhomme. Monitoring molecular changes in the management of myelodysplastic syndromes. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19614.

4.
Br J Haematol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188028

RESUMO

Despite the clinical and molecular heterogeneity of follicular lymphoma (FL), there remains a lack of biomarker-directed therapeutic approaches in routine clinical practice, with the notable exception of the EZH2 inhibitor tazemetostat in EZH2-mutant FL. Here we examined whether gene mutation status predicts response to clinical mTOR inhibitors (mTORi) in FL, by performing targeted mutational profiling of biopsies from 21 relapsed/refractory FL patients treated with mTORi everolimus or temsirolimus within clinical trials. We observed an enrichment of mutations within the catalytic histone acetyltransferase (HAT) domain of CREBBP in mTORi-responders, and describe distinct transcriptional characteristics and co-occurring mutations of FL harbouring these mutations; reinforcing the growing appreciation of CREBBPHAT mutation as a key biological determinant and its promise as a therapeutic biomarker in FL.

5.
J Transl Med ; 22(1): 108, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280995

RESUMO

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDCA) carrying impaired mismatch repair mechanisms seem to have an outcome advantage under treatment with conventional chemotherapy, whereas the role for the tumor mutation burden on prognosis is controversial. In this study, we evaluated the prognostic role of the mutated genes involved in genome damage repair in a real-life series of PDAC patients in a hospital-based manner from the main Institution deputed to surgically treat such a disease in North Sardinia. METHODS: A cohort of fifty-five consecutive PDAC patients with potentially resectable/border line resectable PDAC (stage IIB-III) or oligometastatic disease (stage IV) and tumor tissue availability underwent next-generation sequencing (NGS)-based analysis using a panel containing driver oncogenes and tumor suppressor genes as well as genes controlling DNA repair mechanisms. RESULTS: Genes involved in the both genome damage repair (DR) and DNA mismatch repair (MMR) were found mutated in 17 (31%) and 15 (27%) cases, respectively. One fourth of PDAC cases (14/55; 25.5%) carried tumors presenting a combination of mutations in repair genes (DR and MMR) and the highest mutation load rates (MLR-H). After correction for confounders (surgery, adjuvant therapy, stage T, and metastasis), multivariate Cox regression analysis indicated that mutations in DR genes (HR = 3.0126, 95% CI 1.0707 to 8.4764, p = 0.0367) and the MLR (HR = 1.0018, 95%CI 1.0005 to 1.0032, p = 0.009) were significantly related to worse survival. CONCLUSIONS: The combination of mutated repair genes and MLR-H, which is associated with a worse survival in our series of PDAC patients treated with conventional chemotherapy protocols, might become a predictive biomarker of response to immunotherapy in addition to its prognostic role in predicting survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Estudos Retrospectivos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Mutação/genética , Reparo do DNA/genética
6.
BMC Cancer ; 24(1): 1048, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187784

RESUMO

BACKGROUND: Pancreatic cancer is anatomically divided into pancreatic head and body/tail cancers, and some studies have reported differences in prognosis. However, whether this discrepancy is induced from the difference of tumor biology is hotly debated. Therefore, we aimed to evaluate the differences in clinical outcomes and tumor biology depending on the tumor location. METHODS: In this retrospective cohort study, we identified 800 patients with pancreatic ductal adenocarcinoma who had undergone upfront curative-intent surgery. Cox regression analysis was performed to explore the prognostic impact of the tumor location. Among them, 153 patients with sufficient tumor tissue and blood samples who provided informed consent for next-generation sequencing were selected as the cohort for genomic analysis. RESULTS: Out of the 800 patients, 500 (62.5%) had pancreatic head cancer, and 300 (37.5%) had body/tail cancer. Tumor location in the body/tail of the pancreas was not identified as a significant predictor of survival outcomes compared to that in the head in multivariate analysis (hazard ratio, 0.94; 95% confidence interval, 0.77-1.14; P = 0.511). Additionally, in the genomic analyses of 153 patients, there were no significant differences in mutational landscapes, distribution of subtypes based on transcriptomic profiling, and estimated infiltration levels of various immune cells between pancreatic head and body/tail cancers. CONCLUSIONS: We could not find differences in prognosis and tumor biology depending on tumor location in pancreatic ductal adenocarcinoma. Discrepancies in prognosis may represent a combination of lead time, selection bias, and clinical differences, including the surgical burden between tumor sites.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Prognóstico , Genômica/métodos , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética
7.
BMC Vet Res ; 20(1): 426, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39306660

RESUMO

Canine distemper virus (CDV) is a highly contagious and often fatal disease affecting wild and domesticated carnivores. The virus is a single-stranded RNA virus from the genus Morbillivirus and the family Paramyxoviridae. While domestic dogs are the most common hosts, the virus poses a significant threat to endangered wildlife due to its broad host range. This study aimed to characterize the CDV Haemagglutinin (H) gene in golden jackals and explore the molecular evolution of the virus in an underrepresented host. A total of 88 brain samples from hunted golden jackals were tested for the presence of CDV viral nucleic acid, and the H gene of positive samples was amplified and sequenced using the Sanger method. Phylogenetic analysis, conducted using maximum likelihood methods, revealed that all Serbian sequences clustered within the Arctic lineage. Notably, the analysis identified a tyrosine (Y) at position 549 of the H protein, a mutation commonly associated with wildlife hosts, instead of the histidine (H) typically found in domestic strains. Additionally, a mutation at position 310 was observed, which could potentially affect the protein's function and virus-host interactions. These findings provide valuable insights into the genetic diversity and evolutionary dynamics of CDV in golden jackals, with broader implications for understanding the virus's adaptability to different hosts. Further research is needed to investigate the functional impact of these mutations, particularly their role in vaccine efficacy and disease transmission across wildlife and domestic species.


Assuntos
Vírus da Cinomose Canina , Cinomose , Chacais , Filogenia , Animais , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/classificação , Sérvia , Chacais/virologia , Cinomose/virologia , Hemaglutininas Virais/genética , Variação Genética
8.
Indian J Med Res ; 159(6): 689-694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39382457

RESUMO

Background & objectives Genetic analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains circulating in India during 2020-2022 was carried out to understand the evolution of potentially expanding and divergent clades. Methods SARS-CoV-2 sequences (n=612) randomly selected from among the sequences of samples collected through a nationwide network of Virus Research Diagnostic Laboratories during 2020 (n=1532) and Indian sequences available in Global Initiative on Sharing All Influenza Data during March 2020-March 2022 (n=53077), were analyzed using the phylo-geo haplotype network approach with reference to the Wuhan prototype sequence. Results On haplotype analysis, 420 haplotypes were revealed from 643 segregating sites among the sequences. Haplotype sharing was noted among the strains from different geographical regions. Nevertheless, the genetic distance among the viral haplotypes from different clades could differentiate the strains into distinct haplo groups regarding variant emergence. Interpretation & conclusions The haplotype analysis revealed that the G and GR clades were co-evolved and an epicentrefor the evolution of the GH, GK and GRA clades. GH was more frequently identified in northern parts of India than in other parts, whereas GK was detected less in north India than in other parts. Thus, the network analysis facilitated a detailed illustration of the pathways of evolution and circulation of SARS-CoV-2 variants.


Assuntos
COVID-19 , Haplótipos , Filogenia , SARS-CoV-2 , Índia/epidemiologia , Humanos , Haplótipos/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , COVID-19/genética , COVID-19/virologia , COVID-19/epidemiologia , Betacoronavirus/genética , Pandemias , Genoma Viral/genética
9.
Nephrology (Carlton) ; 29(1): 48-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772439

RESUMO

BACKGROUND: Accurate genetic diagnosis of end-stage renal disease patients with a family history of renal dysfunction is very essential. It not only helps in proper prognosis, but becomes crucial in designating donor for live related renal transplant. We here present a case of family with deleterious mutations in INF2 and ROBO2 and its importance of genetic testing before preparing for kidney transplantation. CASE PRESENTATION: We report the case of a 29-year-female with end-stage renal disease and rapidly progressive renal failure. Mutational analysis revealed an Autosomal Dominant inheritance pattern and mutation in exon 4 of the INF2 gene (p. Thr215Ser) and exon 26 of the ROBO2 gene (p. Arg1371Cys). Her mother was diagnosed for CKD stage 4 with creatinine level of 4.3 mg/dL. Genetic variants (INF2 and ROBO2) identified in proband were tested in her sisters and mother. Her elder sister was positive for both heterozygous variants (INF2 and ROBO2). Her mother was positive for mutation in INF2 gene, and her donor elder sister did not showed mutation in INF2 gene and had mutation in ROBO2 gene without any clinical symptoms. CONCLUSION: This case report emphasize that familial genetic screening has allowed us in allocating the donor selection in family where family member had history of genetic defect of Chronic Kidney Disease. Information of the causative renal disorder is extremely valuable for risk-assessment and planning of kidney transplantation.


Assuntos
Glomerulosclerose Segmentar e Focal , Falência Renal Crônica , Transplante de Rim , Humanos , Feminino , Idoso , Forminas/genética , Seguimentos , Glomerulosclerose Segmentar e Focal/genética , Mutação , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Falência Renal Crônica/cirurgia , Linhagem , Proteínas Roundabout , Receptores Imunológicos/genética
10.
Childs Nerv Syst ; 40(2): 511-515, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37401974

RESUMO

PURPOSE: Optic pathway gliomas (OPGs) occur in 15% of patients with neurofibromatosis type 1 (NF1). Their location renders biopsy or surgical resection difficult because of the risk of vision loss. Therefore, only a few NF1-OPGs have been used for tissue diagnosis, and only a few analyses have been published on the molecular changes that drive tumorigenesis. METHODS: Due to this reason, we evaluated 305 NF1 patients, 34 with OPG and 271 without OPG for germ line mutations. All subjects underwent clinical examination and DNA analysis of NF1, confirming the diagnosis of NF1. RESULTS: Clinically, the group with OPG had a significantly higher incidence of bone dysplasia (P < 0.001) and more café-au-lait spots (P = 0.001) compared to those in the group without OPG. The frequency of Lisch nodules was on the borderline of statistical significance (P = 0.058), whereas the frequency of neurofibromas did not differ significantly (cutaneous, P = 0.64; plexiform, P = 0.44). Individuals with OPG mostly had mutations in the first one-third of the NF1 gene compared with that in patients who did not have OPG. Some identical mutations were detected in unrelated families with NF1-OPG. CONCLUSION: The observation of certain phenotypic features and the correlation between genotype and phenotype might help to determine the risk of developing OPG with NF1.


Assuntos
Neurofibromatose 1 , Glioma do Nervo Óptico , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Turquia/epidemiologia , Glioma do Nervo Óptico/complicações , Glioma do Nervo Óptico/genética , Manchas Café com Leite , Mutação/genética
11.
Ophthalmic Res ; 67(1): 62-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38091959

RESUMO

INTRODUCTION: Hermansky-Pudlak syndrome (HPS) is a rare autosomal-recessive disease characterized by ocular albinism (OA) or oculocutaneous albinism (OCA), platelet dysfunction, and other symptoms. This study aimed to analyze the molecular defect in two Chinese families with suspected OA, as well as to investigate the profile of HPS6 variants and their genotype-phenotype correlations. METHODS: Seven members from two families were recruited and underwent clinical ophthalmologic examinations. The genomic DNA was extracted from peripheral blood leukocytes. Whole-exome sequencing was performed on the proband of family JX. The single coding exon of HPS6 was directly Sanger sequenced based on PCR amplification in all available family members. An additional 46 probands from families or sporadic cases with the pathogenic variants of HPS6 reported in the literature were reviewed. RESULTS: We identified two different compound heterozygous truncating variants of HPS6 in probands with suspected OA from two independent families. The proband of family JX had c.1674dup and c.503-504del variants, and the other proband from family CZ had a nonsense variant of c.1114C>T and a frameshift variant of c.1556del. Among them, c.1674dup and c.1556del variants in HPS6 have not been reported previously. Therefore, our patients were diagnosed as HPS6 disease by molecular diagnostics. In the retrospective cohort of HPS6 patients, we delineated the profile of HPS6 variants and revealed a significant overlap between CpG islands and the variants of HPS6, suggesting a potential link between DNA methylation and HPS6 variants. We also observed a spatial aggregation of the variants in 3D structure of HPS6 protein, implying the possible functional significance of these structural regions. In addition, we did not find any significant genotype-phenotype correlation of HPS6, and neither did we observe a correlation between the truncation length of the HPS6 protein and the phenotype of HPS6 disease. CONCLUSION: Our research expands the spectrum of HPS6 variants, providing a comprehensive delineation of their profile and systematically investigating genotype-phenotype correlations in HPS6. These findings could offer potentially valuable clues for investigating the molecular mechanism underlying HPS6 pathogenesis, as well as aiding the clinical diagnosis of HPS6 patients and improving disease prognosis.


Assuntos
Albinismo Ocular , Síndrome de Hermanski-Pudlak , Humanos , Albinismo Ocular/diagnóstico , Albinismo Ocular/genética , Estudos Retrospectivos , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/genética , Fenótipo , Proteínas/genética , Mutação , Linhagem , Peptídeos e Proteínas de Sinalização Intracelular/genética
12.
Proteins ; 91(11): 1496-1509, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37408369

RESUMO

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. COVID-19 continues to cause millions of deaths globally in part due to immune-evading mutations. SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication and potentially an effective drug target. Mutations affect the dynamics of enzymes and thereby their activity and ability to bind ligands. Here, we use kinematic flexibility analysis (KFA) to identify how mutations and ligand binding changes the conformational flexibility of Mpro. KFA decomposes macromolecules into regions of different flexibility near-instantly from a static structure, allowing conformational dynamics analysis at scale. Altogether, we analyzed 47 mutation sites across 69 Mpro-ligand complexes resulting in more than 3300 different structures which includes 69 mutated structures with all 47 sites mutated simultaneously and 3243 single residue mutated structures. We found that mutations generally increased the conformational flexibility of the protein. Understanding the impact of mutations on the flexibility of Mpro is essential for identifying potential drug targets in the treatment of SARS-CoV-2. Further studies in this area can offer valuable insights into the mechanisms of molecular recognition.

13.
Clin Genet ; 104(4): 491-496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37270786

RESUMO

Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process.


Assuntos
Mutação da Fase de Leitura , Metaloendopeptidases , Humanos , Mutação da Fase de Leitura/genética , Códon de Iniciação/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação , Códon , Proteínas de Membrana/genética
14.
Calcif Tissue Int ; 113(5): 552-557, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728743

RESUMO

Paget's disease of bone (PDB) is a common, late-onset bone disorder, characterized by focal increases of bone turnover that can result in bone lesions. Heterozygous pathogenic variants in the Sequestosome 1 (SQSTM1) gene are found to be the main genetic cause of PDB. More recently, PFN1 and ZNF687 have been identified as causal genes in patients with a severe, early-onset, polyostotic form of PDB, and an increased likelihood to develop giant cell tumors. In our study, we screened the coding regions of PFN1 and ZNF687 in a Belgian PDB cohort (n = 188). In the PFN1 gene, no variants could be identified, supporting the observation that variants in this gene are extremely rare in PDB. However, we identified 3 non-synonymous coding variants in ZNF687. Interestingly, two of these rare variants (p.Pro937His and p.Arg939Cys) were clustering in the nuclear localization signal of the encoded ZNF687 protein, also harboring the p.Pro937Arg variant, a previously reported disease-causing variant. In conclusion, our findings support the involvement of genetic variation in ZNF687 in the pathogenesis of classical PDB, thereby expanding its mutational spectrum.


Assuntos
Osteíte Deformante , Humanos , Osteíte Deformante/genética , Osteíte Deformante/patologia , Sinais de Localização Nuclear/genética , Proteína Sequestossoma-1/genética , Testes Genéticos , Fatores de Transcrição/genética , Mutação , Profilinas/genética
15.
Hepatol Res ; 53(11): 1117-1125, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37486025

RESUMO

AIM: Radiofrequency ablation (RFA) is regarded as a first-line treatment for hepatocellular carcinoma (HCC) at an early stage. When treated with RFA, tumor biopsy may not be performed due to the risk of neoplastic seeding. We previously revealed that the risk of neoplastic seeding is significantly reduced by performing biopsies after RFA. In this study, we investigated the possibility of pathological evaluation and gene mutation analysis of post-RFA tumor specimens. METHODS: Radiofrequency ablation was undertaken on diethylnitrosamine-induced mouse liver tumor, and tumor samples with or without RFA were subjected to whole exome sequencing. Post-RFA human liver tumor specimens were used for detection of TERT promoter mutations and pathological assessment. RESULTS: The average somatic mutation rate, sites of mutation, and small indels and base transition patterns were comparable between the nontreated and post-RFA tumors. We identified 684 sites of nonsynonymous somatic substitutions in the nontreated tumor and 704 sites of nonsynonymous somatic substitutions in the post-RFA tumor, with approximately 85% in common. In the human post-RFA samples, the TERT promoter mutations were successfully detected in 40% of the cases. Pathological evaluation was possible with post-RFA specimens, and in one case, the diagnosis of adenocarcinoma was made. CONCLUSION: Our findings suggest that post-RFA liver tumor biopsy is a useful and safe method for obtaining tumor samples that can be used for gene mutation analysis and for pathological assessment.

16.
Biochemistry (Mosc) ; 88(3): 417-433, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37076287

RESUMO

Year 2022 marks 25 years since the first mutation in familial autosomal dominant Parkinson's disease was identified. Over the years, our understanding of the role of genetic factors in the pathogenesis of familial and idiopathic forms of Parkinson's disease has expanded significantly - a number of genes for the familial form of the disease have been identified, and DNA markers for an increased risk of developing its sporadic form have been found. But, despite all the success achieved, we are far from an accurate assessment of the contribution of genetic and, even more so, epigenetic factors to the disease development. The review summarizes the information accumulated to date on the genetic architecture of Parkinson's disease and formulates issues that need to be addressed, which are primarily related to the assessment of epigenetic factors in the disease pathogenesis.


Assuntos
Epigênese Genética , Mutação , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Animais
17.
Adv Exp Med Biol ; 1407: 105-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920694

RESUMO

Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Ebolavirus/genética , Marburgvirus/genética , Pseudotipagem Viral , Antivirais/farmacologia , Glicoproteínas , Doença pelo Vírus Ebola/prevenção & controle
18.
Genomics ; 114(5): 110466, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36041637

RESUMO

The global COVID-19 pandemic continues due to emerging Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC). Here, we performed comprehensive analysis of in-house sequenced SARS-CoV-2 genome mutations dynamics in the patients infected with the VOCs - Delta and Omicron, within Recovered and Mortality patients. Statistical analysis highlighted significant mutations - T4685A, N4992N, and G5063S in RdRp; T19R in NTD spike; K444N and N532H in RBD spike, associated with Delta mortality. Mutations, T19I in NTD spike, Q493R and N440K in the RBD spike were significantly associated with Omicron mortality. We performed molecular docking for possible effect of significant mutations on the binding of Remdesivir. We found that Remdesivir showed less binding efficacy with the mutant Spike protein of both Delta and Omicron mortality compared to recovered patients. This indicates that mortality associated mutations could have a modulatory effect on drug binding which could be associated with disease outcome.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Mutação , Pandemias , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
19.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047382

RESUMO

Oncogenic mutations in the EGFR gene are targets of tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma (LC) patients, and their search is mandatory to make decisions on treatment strategies. Liquid biopsy of circulating tumour DNA (ctDNA) is increasingly used to detect EGFR mutations, including main activating alterations (exon 19 deletions and exon 21 L858R mutation) and T790M mutation, which is the most common mechanism of acquired resistance to first- and second-generation TKIs. In this study, we prospectively compared three different techniques for EGFR mutation detection in liquid biopsies of such patients. Fifty-four ctDNA samples from 48 consecutive advanced LC patients treated with TKIs were tested for relevant EGFR mutations with Therascreen® EGFR Plasma RGQ-PCR Kit (Qiagen). Samples were subsequently tested with two different technologies, with the aim to compare the EGFR detection rates: real-time PCR based Idylla™ ctEGFR mutation assay (Biocartis) and next-generation sequencing (NGS) system with Ion AmpliSeq Cancer Hotspot panel (ThermoFisher). A high concordance rate for main druggable EGFR alterations was observed with the two real-time PCR-based assays, ranging from 100% for T790M mutation to 94% for L858R variant and 85% for exon 19 deletions. Conversely, lower concordance rates were found between real-time PCR approaches and the NGS method (L858R: 88%; exon19-dels: 74%; T790M: 37.5%). Our results evidenced an equivalent detection ability between PCR-based techniques for circulating EGFR mutations. The NGS assay allowed detection of a wider range of EGFR mutations but showed a poor ability to detect T790M.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Adenocarcinoma de Pulmão/genética , Reação em Cadeia da Polimerase em Tempo Real , Biópsia Líquida , Resistencia a Medicamentos Antineoplásicos/genética
20.
Molecules ; 28(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959793

RESUMO

Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Aciclovir/farmacologia , Herpes Simples/tratamento farmacológico , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA