Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(18): 3866-3876.e2, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34352204

RESUMO

The emerging role of mitochondria as signaling organelles raises the question of whether individual mitochondria can initiate heterotypic communication with neighboring organelles. Using fluorescent probes targeted to the endoplasmic-reticulum-mitochondrial interface, we demonstrate that single mitochondria generate oxidative bursts, rapid redox oscillations, confined to the nanoscale environment of the interorganellar contact sites. Using probes fused to inositol 1,4,5-trisphosphate receptors (IP3Rs), we show that Ca2+ channels directly sense oxidative bursts and respond with Ca2+ transients adjacent to active mitochondria. Application of specific mitochondrial stressors or apoptotic stimuli dramatically increases the frequency and amplitude of the oxidative bursts by enhancing transient permeability transition pore openings. Conversely, blocking interface Ca2+ transport via elimination of IP3Rs or mitochondrial calcium uniporter channels suppresses ER-mitochondrial Ca2+ feedback and cell death. Thus, single mitochondria initiate local retrograde signaling by miniature oxidative bursts and, upon metabolic or apoptotic stress, may also amplify signals to the rest of the cell.


Assuntos
Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Explosão Respiratória/fisiologia , Cálcio/metabolismo , Canais de Cálcio , Sinalização do Cálcio/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Explosão Respiratória/genética , Análise de Célula Única/métodos
2.
Proc Natl Acad Sci U S A ; 121(25): e2312415121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875149

RESUMO

Plants rely on immune receptor complexes at the cell surface to perceive microbial molecules and transduce these signals into the cell to regulate immunity. Various immune receptors and associated proteins are often dynamically distributed in specific nanodomains on the plasma membrane (PM). However, the exact molecular mechanism and functional relevance of this nanodomain targeting in plant immunity regulation remain largely unknown. By utilizing high spatiotemporal resolution imaging and single-particle tracking analysis, we show that myosin XIK interacts with remorin to recruit and stabilize PM-associated kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) within immune receptor FLAGELLIN SENSING 2 (FLS2)-containing nanodomains. This recruitment facilitates FLS2/BIK1 complex formation, leading to the full activation of BIK1-dependent defense responses upon ligand perception. Collectively, our findings provide compelling evidence that myosin XI functions as a molecular scaffold to enable a spatially confined complex assembly within nanodomains. This ensures the presence of a sufficient quantity of preformed immune receptor complex for efficient signaling transduction from the cell surface.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Inata , Miosinas , Imunidade Vegetal , Proteínas Serina-Treonina Quinases , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Miosinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38777601

RESUMO

MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.


Assuntos
Proteína 4 Homóloga a Disks-Large , Sinapses , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Ratos , Feminino , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Domínios Proteicos , Masculino , Neurônios/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/citologia , Neuropeptídeos
4.
EMBO J ; 40(5): e106010, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346936

RESUMO

The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch-clamp recordings with dual-color Rhod-FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close-by synapses.


Assuntos
Tronco Encefálico/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Internas/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Tronco Encefálico/citologia , Cóclea/citologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Proteínas Recombinantes de Fusão/metabolismo
5.
Nano Lett ; 24(4): 1303-1308, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232135

RESUMO

A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.

6.
J Neurosci ; 43(33): 5883-5892, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37369583

RESUMO

The chemical synapse is a complex machine separated into three parts: presynaptic, postsynaptic, and cleft. Super-resolution light microscopy has revealed alignment of presynaptic vesicle release machinery and postsynaptic neurotransmitter-receptors and scaffolding components in synapse spanning nanocolumns. Cryo-electron tomography confirmed that postsynaptic glutamate receptor-like structures align with presynaptic structures in proximity to synaptic vesicles into transsynaptic assemblies. In our electron tomographic renderings, nearly all transcleft structures visibly connect to intracellular structures through transmembrane structures to form transsynaptic assemblies, potentially providing a structural basis for transsynaptic alignment. Here, we describe the patterns of composition, distribution, and interactions of all assemblies spanning the synapse by producing three-dimensional renderings of all visibly connected structures in excitatory and inhibitory synapses in dissociated rat hippocampal neuronal cultures of both sexes prepared by high-pressure freezing and freeze-substitution. The majority of transcleft structures connect to material in both presynaptic and postsynaptic compartments. We found several instances of assemblies connecting to both synaptic vesicles and postsynaptic density scaffolding. Each excitatory synaptic vesicle within 30 nm of the active zone contacts one or more assembly. Further, intracellular structures were often shared between assemblies, entangling them to form larger complexes or association domains, often in small clusters of vesicles. Our findings suggest that transsynaptic assemblies physically connect the three compartments, allow for coordinated molecular organization, and may combine to form specialized functional association domains, resembling the light-level nanocolumns.SIGNIFICANCE STATEMENT A recent tomographic study uncovered that receptor-like cleft structures align across the synapse. These aligned structures were designated as transsynaptic assemblies and demonstrate the coordinated organization of synaptic transmission molecules between compartments. Our present tomographic study expands on the definition of transsynaptic assemblies by analyzing the three-dimensional distribution and connectivity of all cleft-spanning structures and their connected intracellular structures. While one-to-one component alignment occurs across the synapse, we find that many assemblies share components, leading to a complex entanglement of assemblies, typically around clusters of synaptic vesicles. Transsynaptic assemblies appear to form domains which may be the structural basis for alignment of molecular nanodomains into synapse spanning nanocolumns described by super-resolution light microscopy.


Assuntos
Sinapses , Transmissão Sináptica , Masculino , Feminino , Animais , Ratos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Receptores de Glutamato
7.
Environ Sci Technol ; 58(36): 16204-16214, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39190017

RESUMO

Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Ultrafiltração , Incrustação Biológica , Polímeros/química , Soroalbumina Bovina/química
8.
Nano Lett ; 23(21): 10089-10096, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890167

RESUMO

An in-depth understanding of the structure-property relationships in semiconductor mixed-halide perovskites is critical for their potential applications in various light-absorbing and light-emitting optoelectronic devices. Here we show that during the crystal growth of mixed-halide CsPbBr1.2I1.8 nanocrystals (NCs), abundant Ruddlesden-Popper (RP) plane stacking faults are formed to release the lattice strain. These RP planes hinder the exchange of halide species across them, resulting in the presence of multiple nanodomains with discrete mixed-halide compositions inside a single CsPbBr1.2I1.8 NC. Photoluminescence peaks from these pre-segregated nanodomains, whose correlated intensity and wavelength variations signify the interactions of coupled quantum dots within a single CsPbBr1.2I1.8 NC, can be simultaneously resolved at cryogenic temperature. Our findings thus point to a fascinating scenario in which a semiconductor nanostructure can be further divided into multiple quantum-light sources, the interaction and manipulation of which will promote novel photophysics to facilitate their potential applications in quantum information technologies.

9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125896

RESUMO

Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed.


Assuntos
Microdomínios da Membrana , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Animais , Humanos
10.
J Neurosci ; 42(12): 2385-2403, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35063999

RESUMO

Efficient and reliable neurotransmission requires precise coupling between action potentials (APs), Ca2+ entry and neurotransmitter release. However, Ca2+ requirements for release, including the number of channels required, their subtypes, and their location with respect to primed vesicles, remains to be precisely defined for central synapses. Indeed, Ca2+ entry may occur through small numbers or even single open Ca2+ channels, but these questions remain largely unexplored in simple active zone (AZ) synapses common in the nervous system, and key to addressing Ca2+ channel and synaptic dysfunction underlying numerous neurologic and neuropsychiatric disorders. Here, we present single channel analysis of evoked AZ Ca2+ entry, using cell-attached patch clamp and lattice light-sheet microscopy (LLSM), resolving small channel numbers evoking Ca2+ entry following depolarization, at single AZs in individual central lamprey reticulospinal presynaptic terminals from male and females. We show a small pool (mean of 23) of Ca2+ channels at each terminal, comprising N-(CaV2.2), P/Q-(CaV2.1), and R-(CaV2.3) subtypes, available to gate neurotransmitter release. Significantly, of this pool only one to seven channels (mean of 4) open on depolarization. High temporal fidelity lattice light-sheet imaging reveals AP-evoked Ca2+ transients exhibiting quantal amplitude variations of 0-6 event sizes between individual APs and stochastic variation of precise locations of Ca2+ entry within the AZ. Further, total Ca2+ channel numbers at each AZ correlate to the number of presynaptic primed synaptic vesicles. Dispersion of channel openings across the AZ and the similar number of primed vesicles and channels indicate that Ca2+ entry via as few as one channel may trigger neurotransmitter release.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry through voltage-gated calcium channels (VGCCs) causes neurotransmitter release. To understand neurotransmission, its modulation, and plasticity, we must quantify Ca2+ entry and its relationship to vesicle fusion. This requires direct recordings from active zones (AZs), previously possible only at calyceal terminals containing many AZs, where few channels open following action potentials (APs; Sheng et al., 2012), and even single channel openings may trigger release (Stanley, 1991, 1993). However, recording from more conventional terminals with single AZs commonly found centrally has thus far been impossible. We addressed this by cell-attached recordings from acutely dissociated single lamprey giant axon AZs, and by lattice light sheet microscopy of presynaptic Ca2+ entry. We demonstrate nanodomains of presynaptic VGCCs coupling with primed vesicles with 1:1 stoichiometry.


Assuntos
Cálcio , Terminações Pré-Sinápticas , Animais , Feminino , Lampreias , Masculino , Neurotransmissores , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas
11.
Small ; 19(19): e2207464, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36748859

RESUMO

Eco-friendly transparent dielectric ceramics with superior energy storage properties are highly desirable in various transparent energy-storage electronic devices, ranging from advanced transparent pulse capacitors to electro-optical multifunctional devices. However, the collaborative improvement of energy storage properties and optical transparency in KNN-based ceramics still remains challenging. To address this issue, multiple synergistic strategies are proposed, such as refining the grain size, introducing polar nanoregions, and inducing a high-symmetry phase structure. Accordingly, outstanding energy storage density (Wtotal  ≈7.5 J cm-3 , Wrec  ≈5.3 J cm-3 ) and optical transmittance (≈76% at 1600 nm, ≈62% at 780 nm) are simultaneously realized in the 0.94(K0.5 Na0.5 )NbO3 -0.06Sr0.7 La0.2 ZrO3 ceramic, together with satisfactory charge-discharge performances (discharge energy density: ≈2.7 J cm-3 , power density: ≈243 MW cm-3 , discharge rate: ≈76 ns), surpassing previously reported KNN-based transparent ceramics. Piezoresponse force microscopy and transmission electron microscopy revealed that this excellent performance can be attributed to the nanoscale domain and submicron-scale grain size. The significant improvement in the optical transparency and energy storage properties of the materials resulted in the widening of the application prospects of the materials.

12.
J Virol ; 96(5): e0181321, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020471

RESUMO

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that sphingomyelin (SM)-sequestered cholesterol, but not accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol independent, whereas the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein that activates actin nucleation, is recruited to the IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of the CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. IMPORTANCE IAV infects cells by harnessing cellular endocytic machineries. A better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in the plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results provide new insights into IAV infection and the pathway/cargo-specific involvement of the cholesterol pool(s).


Assuntos
Colesterol , Vesículas Revestidas por Clatrina , Proteínas de Ligação a Ácido Graxo , Forminas , Vírus da Influenza A , Internalização do Vírus , Actinas/metabolismo , Animais , Colesterol/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/virologia , Endocitose/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Forminas/metabolismo , Vírus da Influenza A/metabolismo , Domínios Proteicos , Esfingomielinas/metabolismo , Transferrinas/metabolismo
13.
Neuropathol Appl Neurobiol ; 49(4): e12924, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461203

RESUMO

AIMS: Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD. METHODS: We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aß1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice. RESULTS: We found that Aß1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aß plaques with dense cores. CONCLUSIONS: Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Sinapses/patologia , Neurônios/patologia , Transmissão Sináptica/fisiologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
14.
J Exp Bot ; 74(8): 2479-2488, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36738265

RESUMO

Biological membranes are highly dynamic, in particular due to the constant exchange of vesicles between the different compartments of the cell. In addition, the dynamic nature of membranes is also caused by their inherently fluid properties, with the diffusion of both proteins and lipids within their leaflets. Lipid diffusion is particularly difficult to study in vivo but recent advances in optical microscopy and lipid visualization now enable the characterization of lipid lateral motion, and here we review these methods in plants. We then discuss the parameters that affect lipid diffusion in membranes and explore their consequences on the formation of membrane domains at different scales. Finally, we consider how controlled lipid diffusion affects membrane functions during cell signaling, development, and environmental interactions.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Difusão
15.
EMBO J ; 37(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967030

RESUMO

The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+-triggered synaptic vesicle exocytosis. BK-channels are Ca2+-activated large-conductance K+-channels that require close proximity to Ca2+-channels for activation and control Ca2+-triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK-channels are recruited to presynaptic Ca2+-channels, however, is unknown. Here, we show that RBPs (for RIM-binding proteins), which are evolutionarily conserved active zone proteins containing SH3- and FN3-domains, directly bind to BK-channels. We find that RBPs interact with RIMs and Ca2+-channels via their SH3-domains, but to BK-channels via their FN3-domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK-currents and depleted BK-channels from active zones. Our data suggest that RBPs recruit BK-channels into a RIM-based macromolecular active zone complex that includes Ca2+-channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio-temporal coupling of Ca2+-influx to Ca2+-triggered neurotransmitter release in a presynaptic terminal.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Vesículas Sinápticas/genética , Domínios de Homologia de src
16.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393675

RESUMO

Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.


Assuntos
Cavéolas , Cavernas , Animais , Caveolina 1 , Membrana Celular , Células Endoteliais
17.
Proc Natl Acad Sci U S A ; 116(26): 12857-12862, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182605

RESUMO

Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteins with divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles in morphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.


Assuntos
Parede Celular/metabolismo , Microdomínios da Membrana/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Arabidopsis , Parede Celular/ultraestrutura , Microdomínios da Membrana/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Imagem Individual de Molécula
18.
Proc Natl Acad Sci U S A ; 116(42): 21274-21284, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575745

RESUMO

Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell-cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Glucanos/metabolismo , Microdomínios da Membrana/metabolismo , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia
19.
Pflugers Arch ; 473(9): 1361-1376, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33591421

RESUMO

Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.


Assuntos
Membrana Celular/química , Células Fotorreceptoras Retinianas Bastonetes/química , Rodopsina/química , Animais , Membrana Celular/metabolismo , Humanos , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo
20.
J Cell Sci ; 132(17)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31391241

RESUMO

Internalization of macromolecules and membrane into cells through endocytosis is critical for cellular growth, signaling and plasma membrane (PM) tension homeostasis. Although endocytosis is responsive to both biochemical and physical stimuli, how physical cues modulate endocytic pathways is less understood. Contrary to the accumulating discoveries on the effects of increased PM tension on endocytosis, less is known about how a decrease of PM tension impacts on membrane trafficking. Here, we reveal that an acute decrease of PM tension results in phosphatidic acid (PA) production, F-actin and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]-enriched dorsal membrane ruffling and subsequent macropinocytosis in myoblasts. The PA production induced by decreased PM tension depends on phospholipase D2 (PLD2) activation via PLD2 nanodomain disintegration. Furthermore, the 'decreased PM tension-PLD2-macropinocytosis' pathway is prominent in myotubes, reflecting a potential mechanism of PM tension homeostasis upon intensive muscle stretching and relaxation. Together, we identify a new mechanotransduction pathway that converts an acute decrease in PM tension into PA production and then initiates macropinocytosis via actin and PI(4,5)P2-mediated processes.


Assuntos
Fosfolipase D/metabolismo , Pinocitose/fisiologia , Actinas/metabolismo , Animais , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Ativação Enzimática , Fenômenos Mecânicos , Mecanotransdução Celular , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Pressão Osmótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA