Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Environ Manage ; 369: 122371, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236614

RESUMO

With the e-waste growing rapidly all over the globe due to growing demand of electronics, smartphones, etc., coming up with an efficient and sustainable recycling process is the need of the hour. The present work reports a novel and sustainable process of manufacturing Ni alloy by bringing together three major waste streams such as waste Ni-MH batteries, e-waste plastics, and waste glass. The chosen temperature (1550 °C) favours the reduction of nickel-oxide by e-waste plastic as the reductant and sends rare earth elements present in the waste Ni-MH battery as oxide mixture to the slag phase. Waste glass powder used in this process functions as the fluxing agent, hence not requiring any additional flux. The reduction mechanism is gas-based, controlled mainly by hydrogen and carbon monoxide gases released as a result of decomposition of e-waste plastic as reaction commenced from cold zone (∼300 °C) to hot zone (1550 °C) in the horizontal tubular furnace. Formation of nickel alloy and enrichment of slag with mixture of rare earth oxides were confirmed by XRD, SEM-EDS, and Rietveld refining analysis performed on the XRD spectra of slag phase. ICP-OES (Inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectrometer KT-100S) confirmed the high metal content in the alloy, thereby emphasizing the purity (∼98%) which is close to the composition of nickel super alloy. A maximum of 61% by weight REO enrichment was achieved in the slag phase, having La2O3:44.6%, Pr2O3:14.8%, and Nd2O3: 1.6% under optimised experimental conditions (1550 °C, 15 min, and 20% waste glass powder). This scientific investigation evinces a promising route for efficient utilisation of waste streams emanating from e-waste, thereby devising a sustainable recycling technique and protecting the environment, too.

2.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514692

RESUMO

The main functions of thin-walled structures-widely used in several industries-are to reduce the weight of the finished product and to increase the rigidity of the structure. A popular method for machining such components, often with complex shapes, is using milling. However, milling involves undesirable phenomena. One of them is the occurrence of vibrations caused by the operation of moving parts. Vibrations strongly affect surface quality and also have a significant impact on tool wear. Cutting parameters, machining strategies and tools used in milling constitute some of the factors that influence the occurrence of vibrations. An additional difficulty in milling thin-walled structures is the reduced rigidity of the workpiece-which also affects vibration during machining. We have compared the vibration signal for different approaches to machining thin-walled components with vertical walls made of Ti6Al4V titanium alloy and Inconel 625 nickel alloy. A general-purpose cutting tool for machining any type of material was used along with tools for high-performance machining and high-speed machining adapted for titanium and nickel alloys. A comparison of results was made for a constant material removal rate. The Short-Time Fourier Transform (STFT) method provided the acceleration vibration spectrograms for individual samples.

3.
Nano Lett ; 22(1): 246-254, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978836

RESUMO

Even though the anion exchange membrane fuel cells have many advantages, the stability of their electrocatalysts for oxygen reduction reaction (ORR) has remained remarkably poor. We report here on the ultrathin twisty PdNi-alloy nanowires (NWs) exhibiting a very low reaction overpotential with an E1/2 ∼ 0.95 V versus RHE in alkaline media maintained over 200 K cycles, the highest ever recorded for an electrocatalyst. The mass activity of the used NWs is >10 times higher than fresh commercial Pt/C. Therein, Ni improves the Pd d-band center for a more efficient ORR, and its leaching continuously regenerates the surface active sites. The twisty nanowire morphology imparts multiple anchor points on the electrode surface to arrest their detachment or coalescence and extra stability from self-entanglement. The significance of the NW morphology was further confirmed from the high-temperature durability studies. The study demonstrates that tailoring the number of contact points to the electrode-surface may help realize commercial-grade stability in the highly active electrocatalysts.

4.
J Therm Spray Technol ; 32(4): 959-969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521527

RESUMO

Copper and its alloys are known as antimicrobial agents that can be used in public places; however, pure copper has a low wear resistance and tends to lose its gloss relatively fast and stainless steel is still more desirable because of its mechanical properties and stable appearance. In this research, German silver coatings, a copper-nickel alloy, are studied as a superior alternative for pure copper coatings. German silver coating on mild steel substrates and stainless steel with two different surface roughnesses was prepared and placed into water bath up to 6 months to investigate the corrosion and exposure effects on the antibacterial behavior. A range of techniques was used to study the microstructure, surface morphology and mechanical properties such as microhardness, coating bonding adhesion, surface roughness and wettability of the coating. Colony count method was used to measure the antibacterial properties, and samples were tested against influenza A virus to evaluate the virucidal activity. The coating thickness was around 130 µm and contained 15% pores and oxides with splats forming inside the coating structure. Inside each splat, columnar grains could be seen with an average of 700 nm width and 4 µm length. The bonding strength of the coating was about 15 MPa, the hardness of coatings was about 180 HV, and the average surface roughness of the as-sprayed samples was about 10 µm. German silver coatings can destroy both Staphylococcus aureus and Escherichia coli by more than 90% after 6 h of exposure time, and it also has a high-level of virucidal activity against influenza A virus after 2 h exposure time. Antibacterial behavior did not show any significant changes after 6 months of immersing samples in water bath. Thus, thermally sprayed German silver coatings exhibited silvery color for a long period of time, while its antimicrobial efficiency was comparable to pure copper coatings. Supplementary Information: The online version contains supplementary material available at 10.1007/s11666-022-01528-4.

5.
Molecules ; 24(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266151

RESUMO

The swelling ability of LaNi5 for application to hydrogen-storage-alloy (HSA) actuator is discussed through the measurement of the swelling ratio in hydrogen. The HSA actuator is driven by hydrogen pressure change causing the swelling of HSA. LaNi5 is one of the candidate materials for HSA actuators as well as palladium. Some prototypes of HSA actuators using LaNi5 have been fabricated; however, the kinetic swelling ability of LaNi5 itself has been not investigated. In this paper, the authors investigated the static and kinetic swelling ability of LaNi5 powder under hydrogen atmosphere. The results showed that the swelling ratio increased by 0.12 at the phase transition pressure. Response time decreased with an increase in the charged pressure during absorption, while it remained constant during discharge. Reaction kinetics revealed that these swelling behaviors were explained by hydrogen absorption and lattice expansion. The swelling ability of LaNi5 was also compared with that of palladium. The results show that LaNi5 swells 1.8 times more than palladium under 0.5 MPa. LaNi5 is suitable for an actuator driven repeatedly under more than the phase transition pressure. Palladium can be used for one-way-operation actuator even under 0.1 MPa since its response time during the evacuation was much longer than during the pressurization.


Assuntos
Ligas/química , Hidrogênio/química , Lantânio/química , Níquel/química
6.
Heliyon ; 10(13): e33924, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050476

RESUMO

Hydrogen diffusion and uptake in nickel Alloy 625 under cathodic protection potential (-1050 mVAg/AgCl) and temperature (10 °C) were studied using electrochemical permeation tests. It is the first time hydrogen permeation of nickel alloy at a temperature lower than room temperature was investigated. The results revealed that the effective diffusivity of hydrogen D eff at -1050 mVAg/AgCl varied from 1.81 to 2.86 × 10-15 m2/s across the temperature range of 10-23 °C. The effective subsurface hydrogen concentration C s u b was influenced by both the applied temperature and overpotential. Particularly, the change in C sub at 10 °C is dependent on the hydrogen absorption efficiency affected by the surface coverage fraction of hydrogen. Furthermore, the hydrogen fugacity on the sample surface f H 2 , the applied overpotential, and the temperature have been successfully cross correlated to interpret hydrogen evolution and adsorption. It was demonstrated that f H 2 primarily changed with the applied overpotential, while the temperature affected the gradient of f H 2 during the potential increment. The current study provides valuable insights for industries, assisting in the prediction of hydrogen absorption and hydrogen-assisted failures in subsea nickel alloy components.

7.
Sci Total Environ ; 928: 172645, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38643520

RESUMO

In this paper, the relationship between the pitting corrosion formation of B30 copper-nickel (CuNi) alloy and the metabolism of sulfate-reducing bacteria (SRB) was investigated. Combined with the influence of temperature during the actual operation of the cooling systems, the evolution law of the alloy passivation film was analyzed, and the mechanism of SRB promoting the accelerated development of B30 CuNi alloy pitting corrosion was revealed. The results show that SRB significantly promoted the pitting formation and development of B30 CuNi alloy. The maximum pitting depth was 3.9 µm in the sterile system and 15.3 µm with SRB, which was 3.9 times higher than that of sterile system. The loose porous Cu2S film formed by SRB metabolites and copper matrix was easily penetrated by corrosive anions, which promoted copper dissolution and led to pit nucleation. The sulfide adsorbed on the surface prevented or delayed the passivation of B30 CuNi alloy by blocking the adsorption site of O atom, and the corrosion nuclei continued to grow. The non-uniformity caused by the film peeling accelerated the longitudinal development of pitting corrosion, and the expansion and coalescence of adjacent pits caused the transverse development of pitting corrosion. Temperature had a certain influence on the SRB and the formation of B30 CuNi alloy passivation film. The passivation film was formed rapidly at 50 °C with poor quality and the passivation property of Cu2O film was weakened. With the increase of temperature, the pitting potential of sterile system negative shifted from 0.447 to 0.360 V (vs. SCE), while SRB system from 0.340 to 0.198 V (vs. SCE), and the pitting resistance decreased. The passivation film with defects and the Cu2S reduced the barrier efficiency of the film and accelerated the pitting corrosion of B30 CuNi alloy.

8.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255463

RESUMO

During the production of components, manufacturers of structures are obliged to meet certain requirements and ensure appropriate quality characteristics. It is especially important during the manufacturing of thin-walled structures, which are subject to many errors during machining due to the reduced rigidity of the products, including the deformation of thin walls, which may be the result of the vibration of the system. The appearance of vibrations reduces the quality of the machined surface affecting the increase in the values of surface topography parameters-waviness and roughness. Thin-wall structures-titanium or nickel alloy, among others-play a key role in the aerospace industry, which constantly strives to reduce the weight of the entire structure while meeting requirements. The present work focuses on the evaluation of the parameters of surface topography, dimensional and shape accuracy during the milling of nickel alloy Inconel 625 samples containing a thin wall in a vertical orientation. The experiment was conducted under controlled cutting conditions using a constant material removal rate. As part of the surface topography section, the distribution of waviness, Wa and Wz, and roughness, Ra and Rz, was determined in selected measurement areas in the direction parallel to the direction of the feed motion. Dimensional deviations, measured with a 3D optical scanner, were determined in selected cross sections in the direction perpendicular and parallel to the bottom of the sample presenting the deflection of the thin-walled structure. The results provide information that the used parameter sets affect the measured quantities to varying degrees.

9.
J Phys Condens Matter ; 36(17)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224622

RESUMO

The atomic mobility in liquid pure gallium and a gallium-nickel alloy with 2 at% of nickel is studied experimentally by incoherent quasielastic neutron scattering. The integral diffusion coefficients for all-atom diffusion are derived from the experimental data at different temperatures. DFT-basedab-initiomolecular dynamics (MD) is used to find numerically the diffusion coefficient of liquid gallium at different temperatures, and numerical theory results well agree with the experimental findings at temperatures below 500 K. Machine learning force fields derived fromab-initiomolecular dynamics (AIMD) overestimate within a small 6% error the diffusion coefficient of pure gallium within the genuine AIMD. However, they better agree with experiment for pure gallium and enable the numerical finding of the diffusion coefficient of nickel in the considered melted alloy along with the diffusion coefficient of gallium and integral diffusion coefficient, that agrees with the corresponding experimental values within the error bars. The temperature dependence of the gallium diffusion coefficientDGa(T)follows the Arrhenius law experimentally for all studied temperatures and below 500 K also in the numerical simulations. However,DGa(T)can be well described alternatively by an Einstein-Stokes dependence with the metallic liquid viscosity following the Arrhenius law, especially for the MD simulation results at all studied temperatures. Moreover, a novel variant of the excess entropy scaling theory rationalized our findings for gallium diffusion. Obtained values of the Arrhenius activation energies are profoundly different in the competing theoretical descriptions, which is explained by different temperature-dependent prefactors in the corresponding theories. The diffusion coefficient of gallium is significantly reduced (at the same temperature) in a melted alloy with natural nickel, even at a tiny 2 at% concentration of nickel, as compared with its pure gallium value. This highly surprising behavior contradicts the existing excess entropy scaling theories and opens a venue for further research.

10.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512382

RESUMO

In this study, we examined the effects of an aluminization process on the microstructure and texture of Haynes 282 nickel samples fabricated using the direct metal laser sintering technique. The aluminization process involved the use of chemical vapor deposition with AlCl3 vapors in a hydrogen atmosphere at a temperature of 1040 °C for 8 h. Following the 3D printing and aluminization steps, we analyzed the microstructure of the Haynes 282 nickel alloy samples using light microscopy and scanning electron microscopy. Additionally, we investigated the texture using X-ray diffractometry. A texture analysis revealed that after the process of direct laser sintering of metals, the texture of the Haynes 282 nickel alloy samples developed a texture typical of cast materials. Then, in the aluminization process, the texture was transformed-from foundry-type components to a texture characteristic of recrystallization.

11.
Appl Spectrosc ; 77(4): 371-381, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36650747

RESUMO

A simple cost-effective laser-induced breakdown spectroscopy (LIBS) instrument was used for quantification of major elements in several nickel alloys and also sorting them. A compact low-power diode-pumped solid-state laser and a miniature low-resolution spectrometer were assembled for the LIBS instrument. Material properties of the nickel alloys depend mainly on the composition of the major elements, Ni, Cr, and Fe, ranging from a few to ∼60 wt%. The emission peaks at 547.7 nm, 520.4 nm, and 438.1 nm for Ni, Cr, and Fe, respectively, were chosen for this analysis. The analytical performance was found to be enough for the quantification of Ni, Cr, and Fe in the nickel alloys. Limits of detection and accuracy were estimated to be a few weight percent (wt%) and measurement precisions were less than 10% in terms of relative standard deviation. The calibration performance of this intensity-based method was compared with that of the "ratio method" which is used in conventional optical emission spectroscopy analyses. The comparison indicates that the intensity-based method is more appropriate with the low-performance LIBS instrument that detects emission peaks of only a few major elements. Also, multivariate modeling of the six different nickel alloy samples based on the emission peak intensities of Ni, Cr, and Fe was performed using k-nearest neighbors (KNN) and linear discriminant analysis (LDA). The KNN and ordinary LDA models showed 95.0% and 98.3% classification correctness for the separate test data set, respectively. To improve classification performance further, the two-step LDA model was trained. In this approach, the two closest sample classes responsible for the decrease in the classification correctness were separately modeled in the second step to exploit their difference effectively. The two-step LDA model showed 100% correctness in classifying the test objects. Our results indicate that such a low-performance LIBS instrument can be effectively utilized for quantitative analysis of the major elements in the nickel alloys and their rapid identification or sorting in combination with an appropriate multivariate modeling algorithm.

12.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837287

RESUMO

The development trends in the energy sector clearly indicate an increase in the share of biomass and alternative fuels fed for combustion in power boilers, which results in the imposition of many unfavourable factors and a demanding working environment. During the operation of the energy system, this means a sharp increase in corrosion of the gas-tight pipe walls and coils by the destructive action of chlorine and sulphur. Implementing advanced surface protection in addition to the selection of materials of better quality and resistance to difficult working conditions would significantly reduce their wear by high temperature corrosion. Thermally sprayed coatings offer a great opportunity to protect machine components and energy systems against corrosion, erosion, impact load and abrasive wear. This article presents the test results of high-temperature corrosion resistance of coatings made with Ni-Cr-B-Si and Ni-B-Si alloy powders on a boiler steel substrate. Samples with sprayed coatings were exposed to an atmosphere with a composition of N2 + 9% O2 + 0.08% SO2 + 0.15% HCl at 800 °C for 250, 500, 750 and 1000 h. Tests results of coatings made of Ni-Cr-B-Si alloys subjected to the influence of a corrosive environment showed the formation of a layer of scale on the surface, composed mainly of Cr2O3 oxide, which was a passive layer, reducing the rate of corrosion. Coatings sprayed with Ni-B-Si alloys showed significantly lower corrosion resistance. It was found that the developed technology of subsonic flame spraying with powders of the Ni-Cr-B-Si type allows the production of coatings compliant with the requirements of the energy industry, which allows their use as anti-corrosion protection on boiler elements intended for waste disposal and biomass combustion.

13.
Front Microbiol ; 14: 1149110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180272

RESUMO

Despite its excellent corrosion resistance, B30 copper-nickel alloy is prone to pitting, particularly when exposed to microorganisms. The mechanism underlying the acceleration of pitting in this alloy is not fully understood. In this study, the acceleration of pitting corrosion in B30 copper-nickel alloy caused by a marine microorganism named Pseudomonas aeruginosa (P. aeruginosa) was investigated using surface analysis and electrochemical techniques. P. aeruginosa significantly accelerated the pitting in B30 copper-nickel alloy, with a maximum pitting depth of 1.9 times that of the abiotic control and a significant increase in pitting density. This can be attributed to extracellular electron transfer and copper-ammonia complex production by P. aeruginosa, accelerating the breakdown of the passivation film.

14.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203904

RESUMO

In the case of copper and its alloys, Wire Arc Additive Manufacturing (WAAM) 3D printing technology is mainly used to produce elements for the maritime industry and research has focused on the use of Cu-Al alloys. There is little information devoted to the use of Cu-Ni alloys in this technology, which are also widely used in the maritime industry. In this work, tests were carried out on the microstructure, mechanical properties, and corrosion properties in a 1M NaCl solution of Cu-Ni 90/10 alloy 3D walls printed using the WAAM method. The obtained objects are characterized by a microstructure with elongated column grains and particles of the Ni-Ti phase, hardness in the range of 138-160 HV10, ultimate tensile strength of 495-520 MPa, yield strength of 342-358 MPa, elongation of 16.6-17.9%, and a low average corrosion rate of 7.4 × 10-5 mm/year. The work shows that it is possible to obtain higher mechanical properties of Cu-Ni 90/10 alloy 3D objects produced using the WAAM method compared to cast materials, which opens up the possibility of using this alloy to produce objects with more complex shapes and for use in corrosive working conditions.

15.
Materials (Basel) ; 16(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005144

RESUMO

Tribological tests in real conditions enable obtaining full data on the life of interacting machine parts. This article presents the results of operational tests on the elements of the support ring guidance system in a vertical ball-race mill. The guide and active armour operate under abrasive wear conditions with moderate-impact loads. The wear resistance of elements with overlay welding layers deposited with flux cored wire with a structure of high-alloy chrome cast iron and with a coating flame-sprayed with nickel-based powder was compared. The wear intensity of the overlay weld deposits was much lower than that of the sprayed coatings. The scope of this study also included the analysis of the chemical and phase composition, macro- and microscopic metallographic examinations, and the measurement of the hardness of the deposited layers and coatings.

16.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677981

RESUMO

The synthesis of bimetallic iron-nickel nanoparticles with control over the synthesized phases, particle size, surface chemistry, and oxidation level remains a challenge that limits the application of these nanoparticles. Pulsed laser ablation in liquid allows the properties tuning of the generated nanoparticles by changing the ablation solvent. Organic solvents such as acetone can minimize nanoparticle oxidation. Yet, economical laboratory and technical grade solvents that allow cost-effective production of FeNi nanoparticles contain water impurities, which are a potential source of oxidation. Here, we investigated the influence of water impurities in acetone on the properties of FeNi nanoparticles generated by pulsed laser ablation in liquids. To remove water impurities and produce "dried acetone", cost-effective and reusable molecular sieves (3 Å) are employed. The results show that the Fe50Ni50 nanoparticles' properties are influenced by the water content of the solvent. The metastable HCP FeNi phase is found in NPs prepared in acetone, while only the FCC phase is observed in NPs formed in water. Mössbauer spectroscopy revealed that the FeNi nanoparticles oxidation in dried acetone is reduced by 8% compared to acetone. The high-field magnetization of Fe50Ni50 nanoparticles in water is the highest, 68 Am2/kg, followed by the nanoparticles obtained after ablation in acetone without water impurities, 59 Am2/kg, and acetone, 52 Am2/kg. The core-shell structures formed in these three liquids are also distinctive, demonstrating that a core-shell structure with an outer oxide layer is formed in water, while carbon external layers are obtained in acetone without water impurity. The results confirm that the size, structure, phase, and oxidation of FeNi nanoparticles produced by pulsed laser ablation in liquids can be modified by changing the solvent or just reducing the water impurities in the organic solvent.

17.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143556

RESUMO

Ni35 coatings were fabricated on 45 steel using a CO2 laser at various parameters. A relatively large spot (10 mm diameter) was adopted, which was beneficial to the coating quality and the cladding efficiency. The cross-sectional geometry, phase constituent, and microstructure of the coatings were investigated. With a lower specific energy, coating height increased, while coating width, melted depth, dilution rate, width to height ratio and contact angle decreased. Ni35 coating primarily consisted of γ-Ni, FeNi3, Ni3B, Cr23C6, and Cr5B3. Dendrites with flower-like, fishbone-like, pearl-like, and column-like morphologies were observed. The fraction of flower-like dendrites increased gradually with the decrease in scanning velocity due to the dendrite growth direction evolution. With the decrease in scanning velocity, the microstructure of the heat-affected zone transformed from martensite to martensite + sorbite and finally sorbite. The maximum microhardness of the Ni35 coating reached 451.8 HV0.2, which was about double that of the substrate (220 HV0.2).

18.
Materials (Basel) ; 15(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683235

RESUMO

Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.

19.
Toxics ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36136457

RESUMO

The use of iron-nickel alloy nanoparticles (Fe-Ni ANPs) is increasing daily in various fields. People are increasingly exposed to these nanoparticles for occupational and environmental reasons. Our study determined some of the effects of Fe-Ni ANP exposure and impacts on human health at the cellular level. The cytotoxic and genotoxic potentials of Fe-Ni ANPs were investigated by XTT, clonogenic, comet, and GammaH2AX analyses using Beas-2B cells. Annexin V, multicaspase, and cell cycle arrest methods were used to understand the apoptotic mechanism of action. The intracellular ROS method was used to determine the primary mechanism that leads to cytotoxic and genotoxic activity. The Fe-Ni ANPs showed cytotoxic activity with the XTT and clonogenic methods: they had genotoxic potential, as demonstrated via genotoxicity methods. It was determined that the cytotoxic effect was realized by the caspase-dependent apoptotic pathway, and the cells were stopped at the G0/G1 stage by Fe-Ni ANPs. Increased intracellular ROS due to Fe-Ni ANPs led to cytotoxic, genotoxic, and apoptotic activity. Potential risks to human health due to Fe-Ni ANPs were then demonstrated at the cellular level.

20.
Materials (Basel) ; 15(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591736

RESUMO

The paper is devoted to studying the chemical elements distribution in the material's structure depending on the manufacturing technological parameters and their effect on properties of a new self-lubricating antifriction composite based on powder nickel alloy EP975 with CaF2 solid lubricant for operation at temperature 800 °C and loads up to 5.0 MPa, in air. The study is focused on the features of alloying elements distribution in the composite matrix, which depends on the manufacturing technology. A uniform distribution of all alloying elements in the studied composite was shown. The chemical elements' uniform distribution in the material is associated with one of the most important preparatory technological operations in the general manufacturing technology used. This is a technological operation of mixing powders with subsequent analysis of the finished mixture. The uniform distribution of chemical elements determines the uniform arrangement of carbides and intermetallics in the composite. General manufacturing technology, which includes the main operations, such as hot isostatic pressing technology and hardening heat treatment, contributed to the obtainment of a practically isotropic composite with almost the same properties in the longitudinal and transverse directions. Because of the composite's structural homogeneity, without texturing, characteristics are isotropic. Improving the material's structural homogeneity helps to keep its mechanical and anti-friction qualities stable at high temperatures and stresses in the air. The performed studies demonstrated the correctness of the developed manufacturing technology that was confirmed by the electron microscopy method, micro-X-ray spectral analysis, mechanical and tribological tests. The developed high-temperature antifriction composite can be recommended for severe operating conditions, such as friction units of turbines, gas pumping stations, and high-temperature units of foundry metallurgical equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA