Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2303564120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487083

RESUMO

A metal-free route based on a carbon catalyst to synthesize biphenyls through oxidative dehydrogenation (ODH) of phenyl cyclohexene has been investigated. Among the samples examined, an air-oxidized active carbon exhibits the best activity with a 9.1 × 10-2 h-1 rate constant, yielding 74% biphenyl in 28 h at 140 °C under five bar O2 in anisole. The apparent activation energy is measured as 54.5 kJ⋅mol-1. The extended reaction scope, consisting of 15 differently substituted phenyl cyclohexenes, shows the wide applicability of the proposed method. The catalyst's good recyclability over six runs suggests this ODH method as a promising route to access the biaryl compounds. In addition, the reaction mechanism is investigated with a combination of X-ray photoelectron spectroscopy, functional group blocking, and model compounds of carbon catalysts and is proposed to be based on the redox cycle of the quinoidic groups on the carbon surface. Additional experiments prove that the addition of the catalytic amount of acid (methanesulfonic acid) accelerates the reaction. In addition, Hammett plot examination suggests the formation of a carbonium intermediate, and its possible structure is outlined.

2.
Small ; 20(37): e2401532, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38699945

RESUMO

Borocarbonitride (BCN) catalysts, boasting multiple redox sites, have shown considerable potential in alkane oxidative dehydrogenation (ODH) to olefin molecules. However, their catalytic efficiency still lags behind that of leading commercial catalysts, primarily due to the limited reactivity of oxygen functional groups. In this study, a groundbreaking hybrid catalyst is developed, featuring BCN nanotubes (BCNNTs) encapsulated with manganese (Mn) clusters, crafted through a meticulous supramolecular self-assembly and postcalcination strategy. This novel catalyst demonstrates a remarkable enhancement in activity, achieving 30% conversion and ≈100% selectivity toward styrene in ethylbenzene ODH reactions. Notably, its performance surpasses both pure BCNNTs and those hosting Mn nanoparticles. Structural and kinetic analyses unveil a robust interaction between BCNNTs and the Mn component, substantially boosting the catalytic activity of BCNNTs. Furthermore, density functional theory (DFT) calculations elucidate that BCNNTs encapsulated with Mn clusters not only stabilize key intermediates (─B─O─O─B─) but also enhance the nucleophilicity of active sites through electron transfer from the Mn cluster to the BCNNTs. This electron transfer mechanism effectively lowers the energy barrier for ─C─H cleavage, resulting in a 13% improvement in catalytic activity compared to pure BCNNTs.

3.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542849

RESUMO

Compared to the currently widely used propane dehydrogenation process for propylene production, propane oxidative dehydrogenation (ODHP) offers the advantage of no thermodynamic limitations and lower energy consumption. However, a major challenge in ODHP is the occurrence of undesired over-oxidation reactions of propylene, which reduce selectivity and hinder industrialization. MOFs possess a large number of metal sites that can serve as catalytic centers, which facilitates the easier access of reactants to the catalytic centers for reaction. Additionally, their flexible framework structure allows for easier adjustment of their pores compared to metal oxides and molecular sieves, which is advantageous for the diffusion of products within the framework. This property reduces the likelihood of prolonged contact between the generated propylene and the catalytic centers, thus minimizing the possibility of over-oxidation. The research on MOF catalyzed oxidative dehydrogenation of propane (ODHP) mainly focuses on the catalytic properties of MOFs with cobalt oxygen sites and boron oxygen sites. The advantages of cobalt oxygen site MOFs include significantly reduced energy consumption, enabling catalytic reactions at temperatures of 230 °C and below, while boron oxygen site MOFs exhibit high conversion rates and selectivity, albeit requiring higher temperatures. The explicit structure of MOFs facilitates the mechanistic study of these sites, enabling further optimization of catalysts. This paper provides an overview of the recent progress in utilizing MOFs as catalysts for ODHP and explores how they promote progress in ODHP catalysis. Finally, the challenges and future prospects of MOFs in the field of ODHP reactions are discussed.

4.
Chemphyschem ; 24(4): e202200539, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223257

RESUMO

Modified NiO catalysts with controllable vacancies and dopants are promising for alkene production from oxidative dehydrogenation (ODH) of light alkanes, and a molecular understanding of the modification on elementary reaction steps would facilitate the design of highly efficient catalysts and catalytic processes. In this study, density functional theory (DFT) calculations was used to map out the complete reaction pathways of propane ODH on the NiO (100) surfaces with different modifiers. The results demonstrated that the presence of vacancies (O and Ni) and dopants (Li and Al) alters the electrophilicity of surface oxygen species, which in turn affects the reactivity towards C-H bond activation and the overall catalytic activity and selectivity. The strongly electrophilic O favors a radical mechanism for the first C-H activation on O followed by the second C-H activation on O-O site, whereas weak electrophilic O favors concerted C-H bond breaking over Ni-O site. The C-H bond activation proceeds through a late transition state, characterized by the almost completion of the O-H bond formation. Consequently, the adsorption energy of H adatom on O rather than p-band center or Bader charge of O has been identified to be an accurate descriptor to predict the activation barrier for C-H breaking (activity) as well as the difference between the activation barriers of propene and CH3 CCH3 (selectivity) of ODH.

5.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110826

RESUMO

At present, the production of propylene falls short of the demand, and, as the global economy grows, the demand for propylene is anticipated to increase even further. As such, there is an urgent requirement to identify a novel method for producing propylene that is both practical and reliable. The primary approaches for preparing propylene are anaerobic and oxidative dehydrogenation, both of which present issues that are challenging to overcome. In contrast, chemical looping oxidative dehydrogenation circumvents the limitations of the aforementioned methods, and the performance of the oxygen carrier cycle in this method is superior and meets the criteria for industrialization. Consequently, there is considerable potential for the development of propylene production by means of chemical looping oxidative dehydrogenation. This paper provides a review of the catalysts and oxygen carriers employed in anaerobic dehydrogenation, oxidative dehydrogenation, and chemical looping oxidative dehydrogenation. Additionally, it outlines current directions and future opportunities for the advancement of oxygen carriers.

6.
Angew Chem Int Ed Engl ; 62(38): e202307470, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523147

RESUMO

Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2 O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2 O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h-1 g-1 , which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.

7.
Angew Chem Int Ed Engl ; 62(18): e202301297, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36855938

RESUMO

Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.

8.
Nanotechnology ; 33(43)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760042

RESUMO

Light olefins (C2-C4) play a crucial role as basic ingredients in chemical industry, and oxidative dehydrogenation (ODH) of light alkanes to olefins has been one of the popular routes since the shale gas revolution. ODH of light alkanes has advantages on energy-and-cost saving as compared with traditional direct dehydrogenation, but it is restricted by its overoxidation which results in the relatively low olefin selectivity. Boron nitride (BN), an interesting nanomaterial with an analogous structure to graphene, springs out and manifests the superior performance as advanced catalysts in ODH, greatly improving the olefin selectivity under high alkane conversion. In this review, we introduce BN nanomaterials in four dimensions together with typical methods of syntheses. Traditional catalysts for ODH are also referred as comparison on several indicators-olefin yields and preparation techniques, including the metal-based catalysts and the non-metal-based catalysts. We also surveyed the BN catalysts for ODH reaction in recent five years, focusing on the different dimensions of BN together with the synthetic routes accounting for the active sites and the catalytic ability. Finally, an outlook of the potential promotion on the design of BN-based catalysts and the possible routes for the exploration of BN-related catalytic mechanisms are proposed.

9.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628395

RESUMO

The commercially available zeolite HY and its desilicated analogue were subjected to a classical wet impregnation procedure with NH4VO3 to produce catalysts differentiated in acidic and redox properties. Various spectroscopic techniques (in situ probe molecules adsorption and time-resolved propane transformation FT-IR studies, XAS, 51V MAS NMR, and 2D COS UV-vis) were employed to study speciation, local coordination, and reducibility of the vanadium species introduced into the hierarchical faujasite zeolite. The acid-based redox properties of V centres were linked to catalytic activity in the oxidative dehydrogenation of propane. The modification of zeolite via caustic treatment is an effective method of adjusting its basicity-a parameter that plays an important role in the ODH process. The developed mesopore surface ensured the attachment of vanadium species to silanol groups and formation of isolated (SiO)2(HO)V=O and (SiO)3V=O sites or polymeric, highly dispersed forms located in the zeolite micropores. The higher basicity of HYdeSi, due to the presence of the Al-rich shell, aided the activation of the C-H bond leading to a higher selectivity to propene. Its polymerisation and coke formation were inhibited by the lower acid strength of the protonic sites in desilicated zeolite. The Al-rich shell was also beneficial for anchoring V species and thus their reducibility. The operando UV-vis experiments revealed higher reactivity of the bridging oxygens V-O-V over the oxo-group V=O. The (SiO)3V=O species were found to be ineffective in propane oxidation when temperature does not exceed 400 °C.


Assuntos
Zeolitas , Ácidos , Domínio Catalítico , Propano/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vanádio , Zeolitas/química
10.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056812

RESUMO

Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.

11.
Angew Chem Int Ed Engl ; 61(34): e202205873, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35644917

RESUMO

Although supported anionic gold nanoparticle catalysts have been theoretically investigated for their efficacy in activating O2 in aerobic oxidation reactions, limited studies have been reported due to the difficulty of designing these catalysts. Herein, we developed a feasible method for preparing supported anionic gold nanoparticle catalysts using multivacant lacunary polyoxometalates with high negative charges. We confirmed the strong and robust electronic interaction between gold nanoparticles and multivacant lacunary polyoxometalates, and the electronic states of the supported gold nanoparticle catalysts can be sequentially modulated. Particularly, the catalyst prepared using [SiW9 O34 ]10- acted as an efficient reusable heterogeneous catalyst, showing superior catalytic performance for the oxidative dehydrogenation of piperidone derivatives to the corresponding enaminones and remarkably higher stability than supported gold nanoparticle catalysts without this modification.

12.
Angew Chem Int Ed Engl ; 61(35): e202206758, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35760755

RESUMO

Understanding the structure-activity relationship of surface lattice oxygen is critical but challenging to design efficient redox catalysts. This paper describes data-driven redox activity descriptors on doped vanadium oxides combining density functional theory and interpretable machine learning. We corroborate that the p-band center is the most crucial feature for the activity. Besides, some features from the coordination environment, including unoccupied d-band center, s- and d-band fillings, also play important roles in tuning the oxygen activity. Further analysis reveals that data-driven descriptors could decode more information about electron transfer during the redox process. Based on the descriptors, we report that atomic Re- and W-doping could inhibit over-oxidation in the chemical looping oxidative dehydrogenation of propane, which is verified by subsequent experiments and calculations. This work sheds light on the structure-activity relationship of lattice oxygen for the rational design of redox catalysts.

13.
Angew Chem Int Ed Engl ; 60(11): 5898-5906, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497000

RESUMO

A new strategy affords "non-nano" carbon materials as dehydrogenation catalysts that perform similarly to nanocarbons. Polymer-based carbon precursors that combine a soft-template approach with ion adsorption and catalytic graphitization are key to this synthesis strategy, thus offering control over macroscopic shape, texture, and crystallinity and resulting in a hybrid amorphous/graphitic carbon after pyrolysis. From this intermediate the active carbon catalyst is prepared by removing the amorphous parts of the hybrid carbon materials via selective oxidation. The oxidative dehydrogenation of ethanol was chosen as test reaction, which shows that fine-tuning the synthesis of the new carbon catalysts allows to obtain a catalytic material with an attractive high selectivity (82 %) similar to a carbon nanotube reference, while achieving 10 times higher space-time yields at 330 °C. This new class of carbon materials is accessible via a technically scalable, reproducible synthetic pathway and exhibits spherical particles with diameters around 100 µm, allowing unproblematic handling similar to classic non-nano catalysts.

14.
Angew Chem Int Ed Engl ; 60(36): 19691-19695, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197682

RESUMO

Hexagonal boron nitride (h-BN) has lately received great attention in the oxidative dehydrogenation (ODH) reaction of propane to propylene for its extraordinary olefin selectivity in contrast to metal oxides. However, high crystallinity of commercial h-BN and elusive cognition of active sites hindered the enhancement of utilization efficiency. Herein, four kinds of plasmas (N2 , O2 , H2 , Ar) were accordingly employed to regulate the local chemical environment of h-BN. N2 -treated BN exhibited a remarkable activity, i.e., 26.0 % propane conversion with 89.4 % selectivity toward olefins at 520 °C. Spectroscopy demonstrated that "three-boron center" N-defects in the catalyst played a pivotal role in facilitating the conversion of propane. While the sintering effect of the "BOx " species in O2 -treated BN, led to the suppressed catalytic performance (12.4 % conversion at 520 °C).

15.
Angew Chem Int Ed Engl ; 60(40): 21746-21750, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346541

RESUMO

Oxidative dehydrogenation of ethane to ethylene is an important process in light olefin industry; however, the over-oxidation of ethane leads to low ethylene selectivity. Here, we report a novel approach to electrochemical oxidative dehydrogenation of ethane in anode in conjunction with CO2 reduction at cathode in a solid oxide electrolyser using a porous single-crystalline CeO2 electrode at 600 °C. We identify and engineer the flux and chemical states of active oxygen species that evolve from the lattice at anode surface to activate and dehydrogenate ethane to ethylene via the reaction of epoxy species. Active oxygen species (O2- , O2 2- and O2 - ) at the anode surface effectively dehydrogenate ethane to ethylene, but O- species tend to induce deep oxidation. We demonstrate exceptionally high ethylene selectivity of 95 % and an ethane conversion of 10 % with a durable operation of 300 h.

16.
Chemistry ; 26(5): 1052-1063, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31703149

RESUMO

The complexity of variables during incipient wetness impregnation synthesis of supported metal oxides precludes an in-depth understanding of the chemical reactions governing the formation of the dispersed oxide sites. This contribution describes the use of vapor phase deposition chemistry (also known as grafting) as a tool to systematically investigate the influence of isopropanol solvent on VO(Oi Pr)3 anchoring during synthesis of vanadium oxide on silica. The availability of anchoring sites on silica was found to depend not only on the pretreatment of the silica but also on the solvent present. H-bond donors can reduce the reactivity of isolated silanols whereas disruption of silanol nests by H-bond acceptors can turn unreactive H-bonded silanols into reactive anchoring sites. The model suggested here can inform improved syntheses with increased dispersion of metal oxides on silica.

17.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340139

RESUMO

Oxidative dehydrogenation (ODH) of light alkanes to olefins-in particular, using vanadium-based catalysts-is a promising alternative to the dehydrogenation process. Here, we investigate how the activity of the vanadium phase in ODH is related to its dispersion in porous matrices. An attempt was made to synthesize catalysts in which vanadium was deposited on a microporous faujasite zeolite (FAU) with the hierarchical (desilicated) FAU as supports. These yielded different catalysts with varying amounts and types of vanadium phase and the porosity of the support. The phase composition of the catalysts was confirmed by X-ray diffraction (XRD); low temperature nitrogen sorption experiments resulted in their surface area and pore volumes, and reducibility was measured with a temperature-programmed reduction with a hydrogen (H2-TPR) method. The character of vanadium was studied by UV-VIS spectroscopy. The obtained samples were subjected to catalytic tests in the oxidative dehydrogenation of propane in a fixed-bed gas flow reactor with a gas chromatograph to detect subtract and reaction products at a temperature range from 400-500 °C, with varying contact times. The sample containing 6 wt% of vanadium deposited on the desilicated FAU appeared the most active. The activity was ascribed to the presence of the dispersed vanadium ions in the tetragonal coordination environment and support mesoporosity.


Assuntos
Oxirredução , Propano/química , Vanádio/química , Zeolitas/química , Catálise , Fenômenos Químicos , Conformação Molecular , Temperatura , Difração de Raios X
18.
Angew Chem Int Ed Engl ; 59(21): 8042-8046, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32203632

RESUMO

Although hexagonal boron nitride (h-BN) has recently been identified as a highly efficient catalyst for the oxidative dehydrogenation of propane (ODHP) reaction, the reaction mechanisms, especially regarding radical chemistry of this system, remain elusive. Now, the first direct experimental evidence of gas-phase methyl radicals (CH3 . ) in the ODHP reaction over boron-based catalysts is achieved by using online synchrotron vacuum ultraviolet photoionization mass spectroscopy (SVUV-PIMS), which uncovers the existence of gas-phase radical pathways. Combined with density functional theory (DFT) calculations, the results demonstrate that propene is mainly generated on the catalyst surface from the C-H activation of propane, while C2 and C1 products can be formed via both surface-mediated and gas-phase pathways. These observations provide new insights towards understanding the ODHP reaction mechanisms over boron-based catalysts.

19.
Angew Chem Int Ed Engl ; 59(16): 6546-6550, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32026560

RESUMO

Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2 (OH)x O(3-x/2) (x=0-6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11 B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.

20.
Angew Chem Int Ed Engl ; 59(49): 22072-22079, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32833255

RESUMO

Chemical looping provides an energy- and cost-effective route for alkane utilization. However, there is considerable CO2 co-production caused by kinetically mismatched O2- bulk diffusion and surface reaction in current chemical looping oxidative dehydrogenation systems, rendering a decreased olefin productivity. Sub-monolayer or monolayer vanadia nanostructures are successfully constructed to suppress CO2 production in oxidative dehydrogenation of propane by evading the interference of O2- bulk diffusion (monolayer versus multi-layers). The highly dispersed vanadia nanostructures on titanium dioxide support showed over 90 % propylene selectivity at 500 °C, exhibiting turnover frequency of 1.9×10-2  s-1 , which is over 20 times greater than that of conventional crystalline V2 O5 . Combining in situ spectroscopic characterizations and DFT calculations, we reveal the loading-reaction barrier relationship through the vanadia/titanium interfacial interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA