Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 46(1): 15-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36385580

RESUMO

In this work, the effect of activated carbon particles on the production of xylonic acid from xylose by Gluconobacter oxydans in a stirred tank bioreactor was investigated. The enhancement of the oxygen transfer coefficient by activated carbon particles was experimentally evaluated under different solids volume fractions, agitation and aeration rates conditions. The experimental conditions optimized by response surface methodology (agitation speed 800 rpm, aeration rate 7 L min-1, and activated carbon 0.002%) showed a maximum oxygen transfer coefficient of 520.7 h-1, 40.4% higher than the control runs without activated carbon particles. Under the maximum oxygen transfer coefficient condition, the xylonic acid titer reached 108.2 g/L with a volumetric productivity of 13.53 g L-1 h-1 and a specific productivity of 6.52 g/gx/h. In conclusion, the addition of activated carbon particles effectively enhanced the oxygen mass transfer rate. These results demonstrate that activated carbon particles enhanced cultivation for xylonic acid production an inexpensive and attractive alternative.


Assuntos
Carvão Vegetal , Xilose , Fermentação , Oxigênio , Reatores Biológicos
2.
Biotechnol Bioeng ; 116(8): 1986-1998, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038204

RESUMO

Rocking disposable bioreactors are a newer approach to smaller-scale cell growth that use a cyclic rocking motion to induce mixing and oxygen transfer from the headspace gas into the liquid. Compared with traditional stirred-tank and pneumatic bioreactors, rocking bioreactors operate in a very different physical mode and in this study the oxygen transfer pathways are reassessed to develop a fundamental mass transfer (kL a) model that is compared with experimental data. The model combines two mechanisms, namely surface aeration and oxygenation via a breaking wave with air entrainment, borrowing concepts from ocean wave models. Experimental data for kLa across the range of possible operating conditions (rocking speed, angle, and liquid volume) confirms the validity of the modeling approach, with most predictions falling within ±20% of the experimental values. At low speeds (up to 20 rpm) the surface aeration mechanism is shown to be dominant with a kLa of around 3.5 hr-1 , while at high speeds (40 rpm) and angles the breaking wave mechanism contributes up to 91% of the overall kLa (65 hr-1 ). This model provides an improved fundamental basis for understanding gas-liquid mass transfer for the operation, scale-up, and potential design improvements for rocking bioreactors.


Assuntos
Reatores Biológicos , Oxigênio/análise , Algoritmos , Técnicas de Cultura de Células/instrumentação , Modelos Químicos , Movimento (Física) , Propriedades de Superfície
3.
J Environ Sci (China) ; 55: 224-235, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477817

RESUMO

In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q'air) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.


Assuntos
Oxigênio/análise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Modelos Teóricos , Nitrificação , Esgotos/análise , Águas Residuárias
4.
Angew Chem Int Ed Engl ; 56(47): 15146-15149, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28945948

RESUMO

Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O2 -transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions.

5.
Biotechnol Bioeng ; 113(9): 1862-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26927978

RESUMO

Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 µm; depth: 200 µm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4) m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5) m · s(-1) and a specific surface area of up to 10(5) m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Desenho de Equipamento , Escherichia coli , Microtecnologia/instrumentação , Microtecnologia/métodos , Oxigênio/análise , Oxigênio/química , Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
6.
Waste Manag ; 186: 35-45, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852375

RESUMO

The active graphite felt (GF) catalytic layer was effectively synthesized through a wet ultrasonic impregnation-calcination method, modified with CB and PTFE, and implemented in a pioneering side-aeration electrochemical in-situ H2O2 reactor. The optimal mass ratio (CB: PTFE 1:4) for the modified cathode catalytic layer was determined using a single-factor method. Operating under optimum conditions of initial pH 5, 0.5 L/min air flow, and a current density of 9 mA/cm2, the system achieved a remarkable maximum H2O2 accumulation of 560 mg/L, with the H2O2 production capacity consistently exceeding 95 % over 6 usage cycles. The refined mesoporous structure and improved three-phase interface notably amplified oxygen transfer, utilization, and H2O2 yield. Side aeration led to an oxygen concentration near the cathode reaching 20 mg/L, representing a five-fold increase compared to the 3.95 mg/L achieved with conventional bottom aeration. In the final application, the reaction system exhibited efficacy in the degradation of landfill leachate concentrate. After a 60-minute reaction, complete removal of chroma was attained, and the TOC degradation rate surpassed 60 %, marking a sixfold improvement over the conventional system. These results underscore the substantial potential of the system in H2O2 synthesis and environmental remediation.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Técnicas Eletroquímicas/métodos , Catálise , Grafite/química , Oxigênio/química
7.
Small Methods ; : e2301594, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263805

RESUMO

The mass-transfer of oxygen in liquid phases (including in the bulk electrolyte and near the electrode surface) is a critical step to deliver oxygen to catalyst sites (especially immersed catalyst sites) and use the full capacity of oxygen reduction reaction (ORR). Despite the extensive efforts of optimizing the complex three-phase reaction interfaces to enhance the gaseous oxygen transfer, strong limitations remain due to oxygen's poor solubility and slow diffusion in electrolytes. Herein, a magnetic method for boosting the directional hydrodynamic pumping of oxygen toward immersed catalyst sites is demonstrated which allows the ORR to reach otherwise inaccessible catalytic regions where high currents normally would have depleted oxygen. For Pt foil electrodes without forced oxygen saturation in KOH electrolytes, the mass-transfer-limited current densities can be improved by 60% under an external magnetic field of 435 mT due to the synergistic effect between bulk- and surface-magnetohydrodynamic (MHD) flows induced by Lorentz forces. The residual magnetic fields are further used at the surface of magnetic materials (such as CoPt alloys and Pt/FeCo heterostructures) to enhance the surface-MHD effect, which helps to retain part of the ORR enhancement permanently without applying external magnetic fields.

8.
Materials (Basel) ; 16(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959548

RESUMO

After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize Fe2+ ions in laterite hydrochloric acid lixivium, facilitating subsequent separation and capitalizing on the benefits of microbubble technology, including its expansive specific surface area, negatively charged surface attributes, prolonged stagnation duration, and its capacity to produce active oxygen. The study examined the impacts of aeration aperture, stirring speed, oxygen flow rate, pH value, and reaction temperature. Under optimized experimental conditions, which included an aeration aperture of 0.45 µm, stirring at 500 rpm, a bubbling flow rate of 0.4 L/min, pH level maintained at 3.5, and a temperature range of 75-85 °C, the oxidation efficiency of Fe2+ surpassed 99%. An analysis of the mass transfer process revealed that microbubble aeration markedly enhances the oxygen mass transfer coefficient, measured at 0.051 s-1. The study also confirmed the self-catalytic properties of Fe2+ oxidation and conducted kinetic studies to determine an apparent activation energy of 399 kJ/mol. At pH values below 3.5, the reaction is solely governed by chemical reactions; however, at higher pH values (>3.5), both chemical reactions and oxygen dissolution jointly control the reaction.

9.
Environ Technol ; 44(18): 2713-2724, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35138220

RESUMO

The separator is an important component of the microbial fuel cells (MFCs), which separates anode and cathode entities and facilitates ion transfer between both. Despite the high research in separators in recent years, the need for cost-effective, waste-driven selective separators in MFCs persists. Present study discloses the strategic fabrication of functionalized-tea-waste-ash-clay (FTWA-C) composite separator by integrating functionalized tea waste ash (FTWA) with potter's clay. Clay was used as a base, while FTWA was used as cation exchanger. FTWA and clay were separately mixed in four different ratios, 00:100 (C1); 05:95 (C2); 10:90 (C3); 15:85 (C4). Mixtures were then crafted manually as consecutive four layers. C1-side faced anode while separator-cathode-assembly was developed at C4. The separator was characterized by evaluating proton and oxygen transfer coefficient, and water-uptake analysis. The separator was also analysed for elemental composition, microstructure, particle size, and surface area and porous structure. SEM analysis of FTWA showed the presence of 15-100 nm pores. EDS analysis of the FTWA-C showed the presence of hygroscopic oxides, mainly SO42- and SiO2. A slight peak observed at P/Po∼1, confirmed the presence of macropores. The FTWA-C separator showed proton transfer coefficient as high as 18.7 × 10-5 cm/s, and oxygen mass transfer coefficient of 2.1 × 10-4 cm/s. The FTWA-C displayed the highest operating voltage of 612.4.2 mV, the power density of 1.81 W/m3, and COD removal efficiency of 87.52%. The fabrication cost of this separator was estimated to be $9.8/m2. FTWA-C could be an affordable and high-efficiency alternative for expensive ion-exchange membranes in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Argila , Prótons , Dióxido de Silício , Eletrodos , Oxigênio , Eletricidade
10.
Huan Jing Ke Xue ; 43(4): 2055-2061, 2022 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-35393829

RESUMO

The anaerobic environment of sewers is the main cause of the production of toxic and harmful gases such as hydrogen sulfide and methane. The installation of septic-tanks between the drainage standpipes and municipal sewage pipes has aggravated the current situation of poor ventilation in sewage pipes. A system of enhanced ventilation has been formed. By connecting the drainage standpipes and sewage pipes, the system of enhanced ventilation can ameliorate the ventilation of sewage pipes and improve the gas-phase space environment. The experimental and computational fluid dynamics (CFD) simulation methods were established to explore the law of oxygen gas-liquid mass transfer under the different sewage flow rates or wind speeds. This study aimed to seek a method to enhance the oxygen mass transfer, suppress the anaerobic environment, and achieve the purpose of long-term control of harmful gases. The results showed that increasing the gas-liquid flow rates can accelerate the oxygen mass transfer, and the volumetric mass transfer coefficient increased by 3.5×10-4 min-1 for every increase of 0.1 m·s-1. However, the faster sewage reduced hydraulic retention time. The mass transfer time of oxygen was also shortened, and the promotion effect was not as good as that by enhancing the gas velocity in the pipelines. At the same time, when the average gas velocity increased by 0.1 m·s-1, the lengths of pipes where dissolved oxygen could effectively inhibit H2S increased by 25 m.


Assuntos
Sulfeto de Hidrogênio , Esgotos , Gases , Metano , Oxigênio
11.
Heliyon ; 8(10): e11096, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281403

RESUMO

In biological wastewater treatment, the oxygen supply in an aeration tank is the most important factor for removing organic pollutants, but it takes a large amount of electricity to generate the oxygen supply required. The Jetventurimixer (JVM) is a device that applies Bernoulli's principle, and the difference in flow rate pressure through the impeller is generated by the rotational force. Due to this physical mechanism, this device can supply oxygen in the atmosphere to the bioreactor without additional power. In this study, the JVM-based aeration process was developed for more efficient water treatment that demands lower energy. Parameters were measured for validating the efficiency and lower power demands, including the oxygen mass transfer characteristics and power efficiency. The results indicated that all parameters related to the oxygen mass transfer characteristics were advanced in performance by more than 200 % compared to those of the conventional air diffuser. In the case of power efficiency, it was confirmed that performance was 153-176 % higher. Therefore, it was confirmed that the JVM provides high-efficiency and low-energy benefits to the aeration process and, based on these advantages, the developed system seems to require further studies and validation for application to the water treatment system.

12.
Bioengineering (Basel) ; 9(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35621484

RESUMO

Two-way Euler-Lagrange simulations are performed to characterize the hydrodynamics in the single-use bioreactor Mobius® CellReady 3 L. The hydrodynamics in stirred tank bioreactors are frequently modeled with the Euler-Euler approach, which cannot capture the trajectories of single bubbles. The present study employs the two-way coupled Euler-Lagrange approach, which accounts for the individual bubble trajectories through Langrangian equations and considers their impact on the Eulerian liquid phase equations. Hydrodynamic process characteristics that are relevant for cell cultivation including the oxygen mass transfer coefficient, the mixing time, and the hydrodynamic stress are evaluated for different working volumes, sparger types, impeller speeds, and sparging rates. A microporous sparger and an open pipe sparger are considered where bubbles of different sizes are generated, which has a pronounced impact on the bubble dispersion and the volumetric oxygen mass transfer coefficient. It is found that only the microporous sparger provides sufficiently high oxygen transfer to support typical suspended mammalian cell lines. The simulated mixing time and the volumetric oxygen mass transfer coefficient are successfully validated with experimental results. Due to the small reactor size, mixing times are below 25 s across all tested conditions. For the highest sparging rate of 100 mL min-1, the mixing time is found to be two seconds shorter than for a sparging rate of 50 mL min-1, which again, is 0.1 s longer than for a sparging rate of 10 mL min-1 at the same impeller speed of 100 rpm and the working volume of 1.7 L. The hydrodynamic stress in this bioreactor is found to be below critical levels for all investigated impeller speeds of up to 150 rpm, where the maximum levels are found in the region where the bubbles pass behind the impeller blades.

13.
ACS Appl Mater Interfaces ; 14(41): 46695-46707, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36210526

RESUMO

Cathodic catalytic activity and interfacial mass transfer are key factors for efficiently generating hydrogen peroxide (H2O2) via a two-electron oxygen reduction reaction (ORR). In this work, a carbonized carboxymethyl cellulose (CMC)-reduced graphene oxide (rGO) synthetic fabric cathode was designed and constructed to improve two-electron ORR activity and interfacial mass transfer. Carbonized CMC exhibits abundant active carboxyl groups and excellent two-electron ORR activity with an H2O2 selectivity of approximately 87%, higher than that of rGO and other commonly used carbonaceous catalysts. Carbonizing CMC and the agglomerates formed from it restrain the restacking of rGO sheets and thus create abundant meso/macroporous channels for the interfacial mass transfer of oxygen and H2O2. Thus, the as-constructed carbonized CMC-rGO synthetic fabric cathode exhibits exceptional H2O2 electrosynthesis performance with 11.94 mg·h-1·cm-2 yield and 82.32% current efficiency. The sufficient active sites and mass-transfer channels of the cathode also ensure its practical application performance at high current densities, which is further illustrated by the rapid organic pollutant degradation via the H2O2-based electro-Fenton process.

14.
Bioengineering (Basel) ; 9(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049731

RESUMO

Understanding the hydrodynamic conditions in bioreactors is of utmost importance for the selection of operating conditions during cell culture process development. In the present study, the two-phase flow in the lab-scale single-use bioreactor XcellerexTM XDR-10 is characterized for working volumes from 4.5 L to 10 L, impeller speeds from 40 rpm to 360 rpm, and sparging with two different microporous spargers at rates from 0.02 L min-1 to 0.5 L min-1. The numerical simulations are performed with the one-way coupled Euler-Lagrange and the Euler-Euler models. The results of the agitated liquid height, the mixing time, and the volumetric oxygen mass transfer coefficient are compared to experiments. For the unbaffled XDR-10, strong surface vortex formation is found for the maximum impeller speed. To support the selection of suitable impeller speeds for cell cultivation, the surface vortex formation, the average turbulence energy dissipation rate, the hydrodynamic stress, and the mixing time are analyzed and discussed. Surface vortex formation is observed for the maximum impeller speed. Mixing times are below 30 s across all conditions, and volumetric oxygen mass transfer coefficients of up to 22.1 h-1 are found. The XDR-10 provides hydrodynamic conditions which are well suited for the cultivation of animal cells, despite the unusual design of a single bottom-mounted impeller and an unbaffled cultivation bioreactor.

15.
Bioresour Technol ; 323: 124552, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360720

RESUMO

A laboratory-scale aerobic fluidized bed biofilm reactor (AFBBR) was established to evaluate the oxygen mass transfer (OMT) process and its impact on municipal wastewater treatment performance. Aeration rates had different effects on the OMT of the wastewater and biofilm. In the wastewater, oxygenation performance, oxygen uptake rate (OUR), and volumetric OMT coefficient (kLa) improved under high aeration rates. However, within the biofilm, the OMT process under the aeration rate of 0.096 L/(min·L) were higher than under other conditions [0.064 L/(min·L) and 0.128 L/(min·L)]. The denitrifying bacteria (DNB) abundance under the aeration rate of 0.096 L/(min·L) were improved so that total nitrogen (TN, 66.98 ± 4.23%) and ammonia nitrogen (NH4+-N, 74.70 ± 2.30%) removal were higher than those under other aeration conditions. These results showed that suitable aeration could improve wastewater treatment efficiency through changing the OMT process and microbial community structure.


Assuntos
Poluentes Ambientais , Microbiota , Biofilmes , Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio/análise , Oxigênio , Eliminação de Resíduos Líquidos , Águas Residuárias
16.
Water Res X ; 13: 100118, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34604729

RESUMO

Fouling of fine-pore diffusers can cause substantial aeration energy wastage. It remains challenging to monitor their condition and decide the optimal time for labour-intensive and costly cleaning actions. In this study, we show that data from standard sensors (airflow rate, dissolved oxygen concentration, pressure and airflow valve position), which are fed to simple models, can track the diffuser's condition. Additionally, the parameter estimation of diffuser dynamic wet pressure, oxygen transfer rate, respiration rate and the joint alpha fouling factor ( α F ) was facilitated by an active fault detection inspired method. The method executes a sequence with piecewise constant valve positions via the control system. As a result, airflow rates in a sequence similar to a staircase are obtained, which simplifies the estimation of dissolved oxygen dynamics and airflow rate dynamics. The proposed method was evaluated on a full scale over 18 months and successfully detected a reduced cleaning in the diffusers and several sensor-related disturbances. Ultimately, the findings motivate further research on how modelling combined with repetitive process disturbances can leverage data-driven insights from standard instrumentation.

17.
PeerJ ; 9: e11405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123585

RESUMO

This study aimed to develop bioreactors for cultivation of thraustochytrid, Aurantiochytrium limacinum BUCHAXM 122, that are low in cost and simple to operate. Obtaining maximum biomass and fatty acid production was a prerequisite. Three bioreactor designs were used: stirred tank bioreactor (STB), bubble bioreactor (BB) and internal loop airlift bioreactor (ILAB). The bioreactors were evaluated for their influence on oxygen mass transfer coefficient (kLa), using various spargers, mixing speed, and aeration rates. Biomass and DHA production from STB, BB, ILAB were then compared with an incubator shaker, using batch culture experiments. Results showed that a bundle of eight super-fine pore air stones was the best type of aeration sparger for all three bioreactors. Optimal culture conditions in STB were 600 rpm agitation speed and 2 vvm aeration rate, while 2 vvm and 1.5 vvm aeration provided highest biomass productivity in BB and ILAB, respectively. Antifoam agent was needed for all reactor types in order to reduce excessive foaming. Results indicated that with optimized conditions, these bioreactors are capable of thraustochytrid cultivation with a similar efficiency as cultivation using a rotary shaker. STB had the highest kLa and provided the highest biomass of 43.05 ± 0.35 g/L at 48 h. BB was simple in design, had low operating costs and was easy to build, but yielded the lowest biomass (27.50 ± 1.56 g/L). ILAB, on the other hand, had lower kLa than STB, but provided highest fatty acid productivity, of 35.36 ± 2.51% TFA.

18.
Appl Biochem Biotechnol ; 189(1): 217-232, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30972705

RESUMO

This study firstly introduced a silicone rubber membrane (SRM) into microbial fuel cell (MFC) for passive oxygen supply to simultaneously remove phenol and nitrogen from synthetic coke-oven wastewater diluted with seawater. Passive oxygen transport with biofilm on the membrane was improved by ~ 18-fold in comparison with the one without a biofilm. In addition, although the oxygen supply was passive, nitrification accounted for 34% of those aeration conditions. It was also found that silicone rubber membrane can control NO2--N and/or NO3--N production. A dual-chamber MFC treating the synthetic coke-oven wastewater achieved a maximum power density of 54 mW m-2 with a coulombic efficiency of 2.7%. We conclude that silicone rubber membrane is effective for sustainable coke-oven wastewater treatment in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Carbono/administração & dosagem , Membranas Artificiais , Nitrogênio/administração & dosagem , Oxigênio/administração & dosagem , Elastômeros de Silicone/química
19.
Chemosphere ; 222: 732-741, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30738316

RESUMO

The removal of toxic hydrogen sulfide (H2S) from the air at pilot-scale with elemental sulfur recovery was evaluated using Fe-EDTA chelate as a single treatment at a pH of about 8.5. This was later combined with a compost biofiltration process for polishing the pre-treated air. Experiments were performed in a unique container system that allowed deploying either Fe-EDTA chelate or Fe-EDTA chelate/biofiltration treatment (hybrid system). The results showed the feasibility of H2S removal at concentrations between 200 and 5300 ppmv (H2S loading rates of 7-190 g m-3 h-1) present in fouled air. The Fe-EDTA chelate as a single treatment was able to remove nearly 99.99% of the H2S at inlet concentrations ≤ 2400 ppmv (107 g m-3 h-1), while the hybrid system archived undetectable outlet H2S concentrations (<1 ppmv) at inlet levels of 4000 and 5300 ppmv. At 5300 ppmv, the Fe-EDTA chelate process H2S removal efficiency decreased to 99.20% due to the limitation of oxygen mass transfer in the Fe(III) regeneration reaction. Under the previous conditions, the pH was required to be controlled by the addition of NaOH, due to the likely occurrence of undesirable parallel reactions. The elemental sulfur yield attained in the physicochemical module was 75-93% with around 80% recovered efficiently as a solid.


Assuntos
Recuperação e Remediação Ambiental/métodos , Compostos Férricos/farmacologia , Sulfeto de Hidrogênio/isolamento & purificação , Enxofre/isolamento & purificação , Poluentes Atmosféricos/isolamento & purificação , Ácido Edético/farmacologia , Quelantes de Ferro/farmacologia , Oxigênio , Projetos Piloto
20.
Appl Biochem Biotechnol ; 181(2): 710-724, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27723011

RESUMO

In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).


Assuntos
Reatores Biológicos , Meios de Cultura/química , Gases/química , Modelos Químicos , Oxigênio/química , Reologia/métodos , Análise da Demanda Biológica de Oxigênio/métodos , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA