Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(47)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-33906183

RESUMO

Electrical synaptic devices are the basic components for the hardware based neuromorphic computational systems, which are expected to break the bottleneck of current von Neumann architecture. So far, synaptic devices based on three-terminal transistors are considered to provide the most stable performance, which usually use gate pulses to modulate the channel conductance through a floating gate and/or charge trapping layer. Herein, we report a three-terminal synaptic device based on a two-dimensional molybdenum ditelluride (MoTe2)/hexagonal boron nitride (hBN) heterostructure. This structure enables stable and prominent conductance modulation of the MoTe2channel by the photo-induced doping method through electron migration between the MoTe2channel and ultraviolet (UV) light excited mid-gap defect states in hBN. Therefore, it is free of the floating gate and charge trapping layer to reduce the thickness and simplify the fabrication/design of the device. Moreover, since UV illumination is indispensable for stable doping in MoTe2channel, the device can realize both short- (without UV illumination) and long- (with UV illumination) term plasticity. Meanwhile, the introduction of UV light allows additional tunability on the MoTe2channel conductance through the wavelength and power intensity of incident UV, which may be important to mimic advanced synaptic functions. In addition, the photo-induced doping method can bidirectionally dope MoTe2channel, which not only leads to large high/low resistance ratio for potential multi-level storage, but also implement both potentiation (n-doping) and depression (p-doping) of synaptic weight. This work explores alternative three-terminal synaptic configuration without floating gate and charge trapping layer, which may inspire researches on novel electrical synapse mechanisms.

2.
Small Methods ; 8(2): e2300391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231569

RESUMO

Instead of the current method of transmitting voltage or current signals in electronic circuit operation, light offers an alternative to conventional logic, allowing for the implementation of new logic concepts through interaction with light. This manuscript examines the use of light in implementing new logic concepts as an alternative to traditional logic circuits and as a future technology. This article provides an overview of how to implement logic operations using light rather than voltage or current signals using optoelectronic materials such as 2D materials, metal-oxides, carbon structures, polymers, small molecules, and perovskites. This review covers the various technologies and applications of using light to dope devices, implement logic gates, control logic circuits, and generate light as an output signal. Recent research on logic and the use of light to implement new functions is summarized. This review also highlights the potential of optoelectronic logic for future technological advancements.

3.
Nanoscale Res Lett ; 14(1): 146, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037551

RESUMO

Graphene enhanced WO3 has recently become a promising material for various applications. The understanding of the transfer of charge carriers during the photocatalytic processes remains unclear because of their complexity. In this study, the characteristics of the deposited WO3/graphene layered materials were investigated by Raman spectroscopy, UV-vis spectroscopy, and SEM. According to the results, p-graphene exhibits and enhances the characteristics of the WO3/graphene film. The photocatalytic activities of WO3/graphene layered materials were assessed by the photocatalytic degradation of oxytetracycline antibiotics as irradiated by UV light. Here, a higher current of cyclic voltammetry and a higher resistance of impedance spectra were obtained with the as-grown WO3/graphene directly synthesized on Cu foils under UV light using an electrochemical method, which was different from traditional WO3 catalysts. Thus, it is urgent to explore the underlying mechanism in depth. In this study, a large layered material WO3/graphene was fabricated on a Si substrate using a modified CVD method, and a WO3/graphene device was developed by depositing a gold electrode material and compared with a WO3 device. Due to photo-induced doping effects, the current-voltage test suggested that the photo-resistance is larger than dark-resistance, and the photo-current is less than the dark current based on WO3/graphene layered materials, which are significantly different from the characteristics of the WO3 layered material. A new pathway was developed here to analyze the transfer properties of carriers in the photocatalytic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA