Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8602-8608, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954477

RESUMO

Currently, the construction of anti-ambipolar transistors (AATs) is primarily based on asymmetric heterostructures, which are challenging to fabricate. AATs used for photodetection are accompanied by dark currents that prove difficult to suppress, resulting in reduced sensitivity. This work presents light-triggered AATs based on an in-plane lateral WSe2 homojunction without van der Waals heterostructures. In this device, the WSe2 channel is partially electrically controlled by the back gate due to the screening effect of the bottom electrode, resulting in a homojunction that is dynamically modulated with gate voltage, exhibiting electrostatically reconfigurable and light-triggered anti-ambipolar behaviors. It exhibits high responsivity (188 A/W) and detectivity (8.94 × 1014 Jones) under 635 nm illumination with a low power density of 0.23 µW/cm2, promising a new approach to low-power, high-performance photodetectors. Moreover, the device demonstrates efficient self-driven photodetection. Furthermore, ternary inverters are realized using monolithic WSe2, simplifying the manufacturing of multivalued logic devices.

2.
Nano Lett ; 24(25): 7724-7731, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864413

RESUMO

Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.

3.
Small ; 20(23): e2310166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38145326

RESUMO

Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4-chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open-circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self-powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase-transition temperature (≈475 K) which prompts such self-powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm-2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self-powered polarized photodetection in high-temperature conditions.

4.
Small ; : e2312127, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698570

RESUMO

Colloidal quantum dots are semiconductor nanocrystals endowed with unique optoelectronic properties. A major challenge to the field is the lack of methods for synthesizing quantum dots exhibit strong photo-response in the deep-ultraviolet (DUV) band. Here, a facile solution-processed method is presented for synthesizing ultrawide bandgap aluminium nitride quantum dots (AlN QDs) showing distinguished UV-B photoluminescence. Combined with the strong optical response in solar blind band, a solution-processed, self-powered AlN-QDs/ß-Ga2O3 solar-blind photodetector is demonstrated. The photodetector is characterized with a high responsivity of 1.6 mA W-1 under 0 V bias and specific detectivity 7.60 × 10-11 Jones under 5 V bias voltage with good solar blind selectivity. Given the solution-processed capability of the devices and extraordinary properties of AlN QDs, this study anticipates the utilization of AlN QDs will open up unique opportunities for cost-effective industrial production of high-performance DUV optoelectronics for large-scale applications.

5.
Small ; 20(8): e2306363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817352

RESUMO

Owing to the Fermi pinning effect arose in the metal electrodes deposition process, metal-semiconductor contact is always independent on the work function, which challenges the next-generation optoelectronic devices. In this work, a metal-assisted transfer approach is developed to transfer Bi2 O2 Se nanosheets onto the pre-deposited metal electrodes, benefiting to the tunable metal-semiconductor contact. The success in Bi2 O2 Se nanosheets transfer is contributed to the stronger van der Waals adhesion of metal electrodes than that of growth substrates. With the pre-deposited asymmetric electrodes, the self-powered near-infrared photodetectors are realized, demonstrating low dark current of 0.04 pA, high Ilight /Idark ratio of 380, fast rise and decay times of 4 and 6 ms, respectively, under the illumination of 1310 nm laser. By pre-depositing the metal electrodes on polyimide and glass, high-performance flexible and omnidirectional self-powered near-infrared photodetectors are achieved successfully. This study opens up new opportunities for low-dimensional semiconductors in next-generation high-performance optoelectronic devices.

6.
Small ; : e2400311, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804863

RESUMO

Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.

7.
Small ; 20(22): e2310002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109068

RESUMO

2D Ruddlesden-Popper phase layered perovskites (RPLPs) hold great promise for optoelectronic applications. In this study, a series of high-performance heterojunction phototransistors (HPTs) based on RPLPs with different organic spacer cations (namely butylammonium (BA+), cyclohexylammonium (CyHA+), phenethylammonium (PEA+), p-fluorophenylethylammonium (p-F-PEA+), and 2-thiophenethylammonium (2-ThEA+)) are fabricated successfully, in which high-mobility organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene is adopted to form type II heterojunction channels with RPLPs. The 2-ThEA+-RPLP-based HPTs show the highest photosensitivity of 3.18 × 107 and the best detectivity of 9.00 × 1018 Jones, while the p-F-PEA+-RPLP-based ones exhibit the highest photoresponsivity of 5.51 × 106 A W-1 and external quantum efficiency of 1.32 × 109%, all of which are among the highest reported values to date. These heterojunction systems also mimicked several optically controllable fundamental characteristics of biological synapses, including excitatory postsynaptic current, paired-pulse facilitation, and the transition from short-term memory to long-term memory states. The device based on 2-ThEA+-RPLP film shows an ultra-high PPF index of 234%. Moreover, spacer engineering brought fine-tuned thin film microstructures and efficient charge transport/transfer, which contributes to the superior photodetection performance and synaptic functions of these RPLP-based HPTs. In-depth structure-property correlations between the organic spacer cations/RPLPs and thin film microstructure/device performance are systematically investigated.

8.
Small ; 20(33): e2312120, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38558528

RESUMO

The tunable properties of 2D transition-metal dichalcogenide (TMDs) materials are extensively investigated for high-performance and wavelength-tunable optoelectronic applications. However, the precise modification of large-scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer-scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large-area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single-source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2-, Ni0.06Mo0.26S0.68-, and Ni0.1Mo0.9S1.79Se0.21-based photodetectors is 3.51 × 10-4, 1.48, and 0.9 A W-1 for 532 nm and 0.063, 0.42, and 1.4 A W-1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near-infrared (NIR) photodetection.

9.
Small ; 20(15): e2306600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009782

RESUMO

2D Bi2O2Se has recently garnered significant attention in the electronics and optoelectronics fields due to its remarkable photosensitivity, broad spectral absorption, and excellent long-term environmental stability. However, the development of integrated Bi2O2Se photodetector with high performance and low-power consumption is limited by material synthesis method and the inherent high carrier concentration of Bi2O2Se. Here, a type-I heterojunction is presented, comprising 2D Bi2O2Se and lead-free bismuth perovskite CsBi3I10, for fast response and broadband detection. Through effective charge transfer and strong coupling effect at the interfaces of Bi2O2Se and CsBi3I10, the response time is accelerated to 4.1 µs, and the detection range is expanded from ultraviolet to near-infrared spectral regions (365-1500 nm). The as-fabricated photodetector exhibits a responsivity of 48.63 AW-1 and a detectivity of 1.22×1012 Jones at 808 nm. Moreover, efficient modulation of the dominant photocurrent generation mechanism from photoconductive to photogating effect leads to sensitive response exceeding 103 AW-1 for heterojunction-based photo field effect transistor (photo-FETs). Utilizing the large-scale growth of both Bi2O2Se and CsBi3I10, the as-fabricated integrated photodetector array demonstrates outstanding homogeneity and stability of photo-response performance. The proposed 2D Bi2O2Se/CsBi3I10 perovskite heterojunction holds promising prospects for the future-generation photodetector arrays and integrated optoelectronic systems.

10.
Small ; 20(28): e2309620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38294996

RESUMO

2D A 2 III B 3 VI ${\mathrm{A}}_2^{{\mathrm{III}}}{\mathrm{B}}_3^{{\mathrm{VI}}}$ compounds (A = Al, Ga, In, and B = S, Se, and Te) with intrinsic structural defects offer significant opportunities for high-performance and functional devices. However, obtaining 2D atomic-thin nanoplates with non-layered structure on SiO2/Si substrate at low temperatures is rare, which hinders the study of their properties and applications at atomic-thin thickness limits. In this study, the synthesis of ultrathin, non-layered α-In2Te3 nanoplates is demonstrated using a BiOCl-assisted chemical vapor deposition method at a temperature below 350 °C on SiO2/Si substrate. Comprehensive characterization results confirm the high-quality single crystal is the low-temperature cubic phase α-In2Te3 , possessing a noncentrosymmetric defected ZnS structure with good second harmonic generation. Moreover, α-In2Te3 is revealed to be a p-type semiconductor with a direct and narrow bandgap value of 0.76 eV. The field effect transistor exhibits a high mobility of 18 cm2 V-1 s-1, and the photodetector demonstrates stable photoswitching behavior within a broadband photoresponse from 405 to 1064 nm, with a satisfactory response time of τrise = 1 ms. Notably, the α-In2Te3 nanoplates exhibit good stability against ambient environments. Together, these findings establish α-In2Te3 nanoplates as promising candidates for next-generation high-performance photonics and electronics.

11.
Small ; 20(12): e2307454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948430

RESUMO

Lead halide hybrid perovskites have made great progress in direct X-ray detection and broadband photodetection, but the existence of toxic Pb and the demand for external operating voltage have severely limited their further applications and operational stability improvements. Therefore, exploring "green" lead-free hybrid perovskite that can both achieve X-ray detection and broadband photodetection without external voltage is of great importance, but remains severely challenging. Herein, using centrosymmetric (BZA)3BiI6 (1, BZA = benzylamine) as a template, a pair of chiral-polar lead-free perovskites, (BZA)2(R/S-PPA)BiI6 (2-R/S, R/S-PPA = (R/S)-1-Phenylpropylamine) are successfully obtained by introducing chiral aryl cations of (R/S)-1-Phenylpropylamine. Compared to 1, chiral-polar 2-R presents a significant irradiation-responsive bulk photovoltaic effect (BPVE) with an open circuit photovoltage of 0.4 V, which enables it with self-powered X-ray, UV-vis-NIR broadband photodetection. Specifically, 2-R device exhibits an ultralow detection limit of 18.5 nGy s-1 and excellent operational stability. Furthermore, 2-R as the first lead-free perovskite achieves significant broad-spectrum (377-940 nm) photodetection via light-induced pyroelectric effect. This work sheds light on the rational crystal reconstruction engineering and design of "green" hybrid perovskite toward high-demanded self-powered radiation detection and broadband photodetection.

12.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38211323

RESUMO

MXene two-dimensional materials have been widely used in energy storage, catalysis, sensing and other fields, Nb2C as a typical two-dimensional MXene material, its exploration in the field of optoelectronics is still in its infancy, especially Nb2C-based photodetectors are still to be developed. This paper demonstrates that two-dimensional films based on few-layer Nb2C have a photoelectric response in the wavelength range from visible to near-infrared. We have found that the light response performance can be easily adjusted by controlling the thickness of the spin-coated film, and that Nb2C photodetectors show great advantages in terms of wide bandwidth, polarization response, high switching ratio, etc. By adjusting the material concentration and sample thickness, the photocurrent can reach up to 330 nA, the switching ratio can reach 410, and the responsivity can reach 8.3 × 10-4A W-1. In the polarization characteristic test, an extinction ratio of 7.6 can be obtained. By adjusting the content of that doped MoS2quantum dot, the dark current can reach 7.6 × 10-13A, and the switching ratio can reach 3 × 105, which can be increased by 700 times. The above results show that the few-layer Nb2C nanosheets can be used as optoelectronic detectors in the visible to near-infrared bands, which further broadens the application prospects of two-dimensional MXene.

13.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676122

RESUMO

Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.

14.
Nano Lett ; 23(18): 8547-8552, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671730

RESUMO

An abundance of metallic metasurfaces have been realized with miniscule, intricate features capable of tailored scattering, reflection, and absorption; however, high losses through heat limit their use in optoelectronics. Here, codesign of a detector and a polarization-sensing metasurface overcomes this challenge by utilizing the heat generation for integrated pyroelectric detection of the incoming light polarization. Using a nanogap metasurface with asymmetric metallic elements, polarization-sensitive photodetection exhibits high extinction ratios up to 19 for orthogonally polarized light and allows extraction of Stokes parameters with <12% deviation from theoretical values. This polarization-sensitive photodetector is ultrathin, consisting of active layers of only 290 nm, and exhibits fast response times of ∼2 ns. The structure is fully integrated, requiring no external cameras, detectors, or power sources, and points toward the creation of layered, multifunctional devices that utilize exotic metasurface properties for novel and compact sensing and imaging.

15.
Nano Lett ; 23(3): 1023-1029, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706340

RESUMO

With unique electronic and optical attributes and dangling-bond-free surface, two-dimensional (2D) materials have broadened the functionalities of photodetectors. Here, we report a quadratically nonlinear photodetector (QNPD) composed of a van der Waals (vdW) stacked GaSe/InSe heterostructure. Compared with the reported 2D material-based photodetectors, the extra second-harmonic generation (SHG) process in GaSe/InSe leads to the quadratically nonlinear function between photocurrent and optical intensity, extending the photodetection wavelength from 900 to 1750 nm. The QNPD is highly sensitive to the variation of optical intensity with improved spatial resolution. With the light-light interaction in SHG converted into electrical signal directly, we also demonstrate the QNPD as an autocorrelator for measuring ultrafast pulse widths and an optoelectronic mixer of two modulated pulses for signal processings. The simultaneous involvement of light-light interaction and photoelectric conversion in the vdW stacked QNPD promises its potential to simplify the optoelectronic systems.

16.
Nano Lett ; 23(21): 9943-9952, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874973

RESUMO

Colloidal quantum dots (CQDs) are finding increasing applications in optoelectronic devices, such as photodetectors and solar cells, because of their high material quality, unique and attractive properties, and process flexibility without the constraints of lattice match and thermal budget. However, there is no adequate device model for colloidal quantum dot heterojunctions, and the popular Shockley-Quiesser diode model does not capture the underlying physics of CQD junctions. Here, we develop a compact, easy-to-use model for CQD devices rooted in physics. We show how quantum dot properties, QD ligand binding, and the heterointerface between quantum dots and the electron transport layer (ETL) affect device behaviors. We also show that the model can be simplified to a Shockley-like equation with analytical approximate expressions for reverse saturation current, ideality factor, and quantum efficiency. Our model agrees well with the experiment and can be used to describe and optimize CQD device performance.

17.
Small ; 19(19): e2208274, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36776020

RESUMO

With rapid and continuous consumption of nonrenewable energy, solar energy can be utilized to meet the energy requirement and mitigate environmental issues in the future. To attain a sustainable society with an energy mix predominately dependent on solar energy, photoelectrochemical (PEC) device, in which semiconductor nanostructure-based photocatalysts play important roles, is considered to be one of the most promising candidates to realize the sufficient utilization of solar energy in a low-cost, green, and environmentally friendly manner. Interface engineering of semiconductor nanostructures has been qualified in the efficient improvement of PEC performances including three basic steps, i.e., light absorption, charge transfer/separation, and surface catalytic reaction. In this review, recently developed interface engineering of semiconductor nanostructures for direct and high-efficiency conversion of sunlight into available forms (e.g., chemical fuels and electric power) are summarized in terms of their atomic constitution and morphology, electronic structure and promising potential for PEC applications. Extensive efforts toward the development of high-performance PEC applications (e.g., PEC water splitting, PEC photodetection, PEC catalysis, PEC degradation and PEC biosensors) are also presented and appraised. Last but not least, a brief summary and personal insights on the challenges and future directions in the community of next-generation PEC devices are also provided.

18.
Small ; 19(33): e2302443, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156749

RESUMO

Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.

19.
Small ; 19(29): e2300246, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37013460

RESUMO

2D materials with low symmetry are explored in recent years because of their anisotropic advantage in polarization-sensitive photodetection. Herein the controllably grown hexagonal magnetic semiconducting α-MnTe nanoribbons are reported with a highly anisotropic (100) surface and their high sensitivity to polarization in a broadband photodetection, whereas the hexagonal structure is highly symmetric. The outstanding photoresponse of α-MnTe nanoribbons occurs in a broadband range from ultraviolet (UV, 360 nm) to near infrared (NIR, 914 nm) with short response times of 46 ms (rise) and 37 ms (fall), excellent environmental stability, and repeatability. Furthermore, due to highly anisotropic (100) surface, the α-MnTe nanoribbons as photodetector exhibit attractive sensitivity to polarization and high dichroic ratios of up to 2.8 under light illumination of UV-to-NIR wavelengths. These results demonstrate that 2D magnetic semiconducting α-MnTe nanoribbons provide a promising platform to design the next-generation polarization-sensitive photodetectors in a broadband range.

20.
Small ; 19(1): e2205329, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344449

RESUMO

The exotic electronic properties of topological semimetals (TSs) have opened new pathways for innovative photonic and optoelectronic devices, especially in the highly pursuit terahertz (THz) band. However, in most cases Dirac fermions lay far above or below the Fermi level, thus hindering their successful exploitation for the low-energy photonics. Here, low-energy type-II Dirac fermions in kitkaite (NiTeSe) for ultrasensitive THz detection through metal-topological semimetal-metal heterostructures are exploited. Furthermore, a heterostructure combining two Dirac materials, namely, graphene and NiTeSe, is implemented for a novel photodetector exhibiting a responsivity as high as 1.22 A W-1 , with a response time of 0.6 µs, a noise-equivalent power of 18 pW Hz-0.5 , with outstanding stability in the ambient conditions. This work brings to fruition of Dirac fermiology in THz technology, enabling self-powered, low-power, room-temperature, and ultrafast THz detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA