Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36763985

RESUMO

A common approach for the photoelectrochemical (PEC) splitting of water relies on the application of WO3 porous electrodes sensitized with BiVO4 acting as a visible photoanode semiconductor. In this work, we propose a new architecture of photoelectrodes consisting of supported multishell nanotubes (NTs) fabricated by a soft-template approach. These NTs are formed by a concentric layered structure of indium tin oxide (ITO), WO3, and BiVO4, together with a final thin layer of cobalt phosphate (CoPi) co-catalyst. The photoelectrode manufacturing procedure is easily implementable at a large scale and successively combines the thermal evaporation of single crystalline organic nanowires (ONWs), the magnetron sputtering deposition of ITO and WO3, and the solution dripping and electrochemical deposition of, respectively, BiVO4 and CoPi, plus the annealing in air under mild conditions. The obtained NT electrodes depict a large electrochemically active surface and outperform the efficiency of equivalent planar-layered electrodes by more than one order of magnitude. A thorough electrochemical analysis of the electrodes illuminated with blue and solar lights demonstrates that the characteristics of the WO3/BiVO4 Schottky barrier heterojunction control the NT electrode efficiency, which depended on the BiVO4 outer layer thickness and the incorporation of the CoPi electrocatalyst. These results support the high potential of the proposed soft-template methodology for the large-area fabrication of highly efficient multishell ITO/WO3/BiVO4/CoPi NT electrodes for the PEC splitting of water.

2.
Talanta ; 237: 122930, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736667

RESUMO

Given increasing concern regarding antibiotic environmental contamination, there is immediate need to monitor antibiotic levels to effectively control pollution. In this study, we used a photoelectrochemical aptasensor based on TiO2@MoS2 spiral nanoarrays to detect chloramphenicol (CAP) in antibiotics. Nanoarrays were directly grown on fluorine-doped tin oxide (FTO) conductive glass with excellent biochemical stability, while aptamer-SH were immobilized by chemical binding on a synthetic TiO2@MoS2 nanoarray. Results show that the photocurrents were reduced in the presence of photoelectrochemistry associated with specific selection of aptamer for CAP. When the measurement of the fabricated nanomaterial chip was carried out using a three-electrode system, we found a highly specific and stable detection of chloramphenicol that ranged between 0.1 pM and 1 µM, with the detection limit of 0.1 pM. In addition, we obtained satisfactory results when real sample were used to validate the potential of photoelectrochemical (PEC) aptasensor for detecting chloramphenicol content in milk. Our results demonstrate that photoelectrochemical aptasensor is conducive to the development of less toxic multifunctional nanomaterials, making the biosensor more robust and environmentally friendly. Therefore, photoelectrochemical aptasensor can be widely applied in the field of environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanotubos , Técnicas Eletroquímicas , Limite de Detecção , Titânio
3.
Front Chem ; 9: 733642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568283

RESUMO

We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS.

4.
Front Chem ; 8: 515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637396

RESUMO

Sustainable energy and chemical/material transformation constrained by limited greenhouse gas generation impose a grand challenge and posit outstanding opportunities to electrochemical material devices. Dramatic advancements in experimental and computational methodologies have captured detailed insights into the working of these material devices at a molecular scale and have brought to light some fundamental constraints that impose bounds on efficiency. We propose that the coupling of molecular events in the material device gives rise to contra-varying or co-varying properties and efficiency improving partial decoupling of such properties can be achieved via introducing engineered heterogeneities. A specific class of engineered heterogeneity is in the form of isomaterial heterostructures comprised of non-native and native polymorphs. The non-native polymorph differs from their native/ground state bulk polymorph in terms of its discrete translational symmetry and we anticipate specific symmetry relationships exist between non-native and native structures that enable the formation of interfaces that enhance efficiency. We present circumstantial evidence and provide speculative mechanisms for such an approach with the hope that a more comprehensive delineation of proposed material design will be undertaken.

5.
ACS Appl Mater Interfaces ; 10(39): 33662-33668, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230316

RESUMO

Light addressable/activated electrochemistry (LAE) has recently attracted attention as it can provide spatially resolved electrochemical information without using pre-patterned electrodes whose sizes and positions are unchangeable. Here, we propose hematite (α-Fe2O3) as the photoanode for LAE, which does not require any sort of surface modification for protection or facilitating charge transfer. As experimentally confirmed with various redox species, hematite is stable enough to be used for repetitive electroanalytical measurements. More importantly, it offers exceptionally high spatial resolution so that the "virtual electrode" is exactly as large as the light spot owing to the short diffusion length of the minority carriers. Quantitative analysis of dopamine in this study shows that the hematite-based photoanode is a promising platform for many potential LAE applications including spatially selective detection of oxidizable biomolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA