Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(9): 2649-2666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37312624

RESUMO

Carbon isotope composition of tree-ring (δ13 CRing ) is a commonly used proxy for environmental change and ecophysiology. δ13 CRing reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates (δ13 CP ), such as sucrose. However, δ13 CRing is not merely a record of δ13 CP . Isotope fractionation processes, which are not yet fully understood, modify δ13 CP during sucrose transport. We traced, how the environmental intra-seasonal δ13 CP signal changes from leaves to phloem, tree-ring and roots, for 7 year old Pinus sylvestris, using δ13 C analysis of individual carbohydrates, δ13 CRing laser ablation, leaf gas exchange and enzyme activity measurements. The intra-seasonal δ13 CP dynamics was clearly reflected by δ13 CRing , suggesting negligible impact of reserve use on δ13 CRing . However, δ13 CP became increasingly 13 C-enriched during down-stem transport, probably due to post-photosynthetic fractionations such as sink organ catabolism. In contrast, δ13 C of water-soluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as δ13 CP , but recorded intra-seasonal δ13 CP variability. The impact of environmental signals on δ13 CRing , and the 0.5 and 1.7‰ depletion in photosynthates compared ring organic matter and tree-ring cellulose, respectively, are useful pieces of information for studies exploiting δ13 CRing .


Assuntos
Terapia a Laser , Pinus sylvestris , Pinus , Árvores/metabolismo , Pinus sylvestris/metabolismo , Estações do Ano , Isótopos de Carbono/análise , Carboidratos/análise , Folhas de Planta/metabolismo , Sacarose/metabolismo , Pinus/metabolismo
2.
Plant Cell Environ ; 45(5): 1382-1397, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233800

RESUMO

Carbonic anhydrase (CA) performs the first enzymatic step of C4 photosynthesis by catalysing the reversible hydration of dissolved CO2 that diffuses into mesophyll cells from intercellular airspaces. This CA-catalysed reaction provides the bicarbonate used by phosphoenolpyruvate carboxylase to generate products that flow into the C4 carbon-concentrating mechanism (CCM). It was previously demonstrated that the Zea mays ca1ca2 double mutant lost 97% of leaf CA activity, but there was little difference in the growth phenotype under ambient CO2 partial pressures (pCO2 ). We hypothesise that since CAs are among the fastest enzymes, minimal activity from a third CA, CA8, can provide the inorganic carbon needed to drive C4 photosynthesis. We observed that removing CA8 from the maize ca1ca2 background resulted in plants that had 0.2% of wild-type leaf CA activity. These ca1ca2ca8 plants had reduced photosynthetic parameters and could only survive at elevated pCO2 . Photosynthetic and carbon isotope analysis combined with modelling of photosynthesis and carbon isotope discrimination was used to determine if ca1ca2ca8 plants had a functional C4 cycle or were relying on direct CO2 diffusion to ribulose 1,5-bisphosphate carboxylase/oxygenase within bundle sheath cells. The results suggest that leaf CA activity in ca1ca2ca8 plants was not sufficient to sustain the C4 CCM.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Carbono , Isótopos de Carbono , Anidrases Carbônicas/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/metabolismo
3.
Plant Cell Environ ; 44(8): 2455-2465, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974719

RESUMO

The leaf intercellular airspace is a tortuous environment consisting of cells of different shapes, packing densities, and orientation, all of which have an effect on the travelling distance of molecules from the stomata to the mesophyll cell surfaces. Tortuosity, the increase in displacement over the actual distance between two points, is typically defined as encompassing the whole leaf airspace, but heterogeneity in pore dimensions and orientation between the spongy and palisade mesophyll likely result in heterogeneity in tortuosity along different axes and would predict longer traveling distance along the path of least tortuosity, such as vertically within the columnar cell matrix of the palisade layer. Here, we compare a previously established geometric method to a random walk approach, novel for this analysis in plant leaves, in four different Eucalyptus species. The random walk method allowed us to quantify directional tortuosity across the whole leaf profile, and separately for the spongy and palisade mesophyll. For all species tortuosity was higher in the palisade mesophyll than the spongy mesophyll and horizontal (parallel to the epidermis) tortuosity was consistently higher than vertical (from epidermis to epidermis) tortuosity. We demonstrate that a random walk approach improves on previous geometric approaches and is valuable for investigating CO2 and H2 O transport within leaves.


Assuntos
Eucalyptus/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Ar , Isótopos de Carbono/análise , Parede Celular/ultraestrutura , Eucalyptus/ultraestrutura , Imageamento Tridimensional , Células do Mesofilo/química , Microscopia Eletrônica de Varredura , Células Vegetais , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia
4.
Plant Cell Environ ; 43(8): 1862-1878, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32400900

RESUMO

Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi-factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open-air experiment in Minnesota, USA, including elevated CO2 (eCO2 ), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context-dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2 depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4 grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.


Assuntos
Dióxido de Carbono , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Poaceae/fisiologia , Dióxido de Carbono/metabolismo , Ecossistema , Aquecimento Global , Pradaria , Minnesota , Chuva , Solo/química , Temperatura
5.
Plant Cell Environ ; 40(3): 441-452, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27943309

RESUMO

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within ß-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of ß-ocimenes (+4.4% °C-1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C-1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that ß-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive ß-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.


Assuntos
Atmosfera , Mudança Climática , Florestas , Monoterpenos/análise , Temperatura , Clima Tropical , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Ritmo Circadiano/fisiologia , El Niño Oscilação Sul , Folhas de Planta/fisiologia , Estações do Ano , Compostos Orgânicos Voláteis/metabolismo
6.
Plant Cell Environ ; 38(6): 991-1007, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25737035

RESUMO

To predict how forests will respond to rising temperatures and atmospheric CO2 concentrations, we need to understand how trees respond to both of these environmental factors. In this review, we discuss the importance of scaling, moving from leaf-level responses to those of the canopy, and from short-term to long-term responses of vegetation to climate change. While our knowledge of leaf-level, instantaneous responses of photosynthesis, respiration, stomatal conductance, transpiration and water-use efficiency to elevated CO2 and temperature is quite good, our ability to scale these responses up to larger spatial and temporal scales is less developed. We highlight which physiological processes are least understood at various levels of study, and discuss how ignoring differences in the spatial or temporal scale of a physiological process impedes our ability to predict how forest carbon and water fluxes forests will be altered in the future. We also synthesize data from the literature to show that light respiration follows a generalized temperature response across studies, and that the light compensation point of photosynthesis is reduced by elevated growth CO2. Lastly, we emphasize the need to move beyond single factorial experiments whenever possible, and to combine both CO2 and temperature treatments in studies of tree performance.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/fisiologia , Mudança Climática , Aquecimento Global , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Análise Espaço-Temporal , Temperatura , Árvores/metabolismo
7.
Plant Cell Environ ; 38(6): 1142-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25311401

RESUMO

Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2 ] than at ambient [O2 ]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi > 2 mmol P m(-2), rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.


Assuntos
Fósforo/metabolismo , Fotossíntese/fisiologia , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Modelos Biológicos , Oxigênio/metabolismo , Fosfatos/metabolismo , Fosfatos/fisiologia , Fósforo/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA