Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurochem Res ; 47(8): 2230-2243, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35482135

RESUMO

Various studies have evidenced the neuroprotective role of PDE4 inhibitors. However, whether PDE4 inhibitor, Piclamilast pharmacological post-treatment is protective during cerebral ischemia reperfusion-induced injury remains unknown. Therefore, this study design included testing the hypothesis that Piclamilast administered at the beginning of a reperfusion phase (Piclamilast pPost-trt) shows protective effects and explores & probes underlying downstream mechanisms. Swiss albino male mice were subjected to global ischemic and reperfusion injury for 17 min. The animals examined cerebral infarct size, biochemical parameters, inflammatory mediators, and motor coordination. For memory, assessment mice were subjected to morris water maze (MWM) and elevated plus maze (EPM) test. Histological changes were assessed using HE staining. Piclamilast pPost-trt significantly reduced I/R injury-induced deleterious effects on biochemical parameters of oxidative stress, inflammatory parameters, infarct size, and histopathological changes, according to the findings. These neuroprotective effects of pPost-trt are significantly abolished by pre-treatment with selective CREB inhibitor, 666-15. Current study concluded that induced neuroprotective benefits of Piclamilast Post-trt, in all probability, maybe mediated through CREB activation. Hence, its neuroprotective effects can be further explored in clinical settings.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Inibidores da Fosfodiesterase 4 , Traumatismo por Reperfusão , Animais , Benzamidas , Infarto Cerebral/patologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Piridinas , Traumatismo por Reperfusão/patologia
2.
FASEB J ; 31(12): 5307-5320, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28798156

RESUMO

Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.


Assuntos
Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Benzamidas/uso terapêutico , Fibrose/tratamento farmacológico , Fibrose/enzimologia , Fibrose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/enzimologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/metabolismo , PPAR gama/genética , Piridinas/uso terapêutico , RNA Mensageiro/genética , Citrato de Sildenafila/uso terapêutico
3.
Bioorg Med Chem Lett ; 23(21): 5971-4, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24042005

RESUMO

Human African trypanosomiasis (HAT) is a parasitic neglected tropical disease that affects 10,000 patients each year. Current treatments are sub-optimal, and the disease is fatal if not treated. Herein, we report our continuing efforts to repurpose the human phosphodiesterase 4 (hPDE4) inhibitor piclamilast to target trypanosomal phosphodiesterase TbrPDEB1. We prepared a range of substituted heterocyclic replacements for the 4-amino-3,5-dichloro-pyridine headgroup of piclamilast, and found that these compounds exhibited weak inhibitory activity of TbrPDEB1.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Catecóis/química , Catecóis/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Benzamidas/química , Benzamidas/farmacologia , Descoberta de Drogas , Humanos , Modelos Moleculares , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Proteínas de Protozoários/metabolismo , Piridinas/química , Piridinas/farmacologia , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia
4.
Biomol Concepts ; 14(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909122

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus belonging to the coronavirus family responsible for coronavirus disease 2019 (COVID-19). It primarily affects the pulmonary system, which is the target of chronic obstructive pulmonary disease (COPD), for which many new compounds have been developed. In this study, phosphodiesterase 4 (PDE4) inhibitors are being investigated. The inhibition of PDE4 enzyme produces anti-inflammatory and bronchodilator effects in the lung by inducing an increase in cAMP concentrations. Piclamilast and rolipram are known selective inhibitors of PDE4, which are unfortunately endowed with common side effects, such as nausea and emesis. The selective inhibition of the phosphodiesterase 4B (PDE4B) subtype may represent an intriguing technique for combating this highly contagious disease with fewer side effects. In this article, molecular docking studies for the selective inhibition of the PDE4B enzyme have been carried out on 21 in-house compounds. The compounds were docked into the pocket of the PDE4B catalytic site, and in most cases, they were almost completely superimposed onto piclamilast. Then, in order to enlarge our study, drug-likeness prediction studies were performed on the compounds under study.


Assuntos
COVID-19 , Inibidores da Fosfodiesterase 4 , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 4/farmacologia , SARS-CoV-2
5.
Chem Biol Interact ; 350: 109686, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627785

RESUMO

Colorectal cancer (CRC) is the third leading type of adult cancer in both genders with high morbidity and mortality worldwide. Even though the discovery of many antineoplastic drugs for CRC, the current therapy is not adequately efficient.This study was designed to investigate the effect and mechanism of Piclamilast (PIC), a selective PDE4 inhibitor, on a DMH-induced colorectal cancer (CRC) rat model. The rats were grouped (n = 10) into group 1 (control), group 2 (PIC 3 mg/kg, p.o.), groups 3-5 received DMH (20 mg/kg/week, S.C.), and groups 4 and 5 received PIC (1 and 3 mg/kg/day, p.o.) for 15 weeks. The DMH treatment increased aberrant crypt foci (ACF), Proliferating cell nuclear antigen (PCNA), and TBARS levels, along with decreased antioxidant defenses (GSH, GSH-Px, and catalase). Increased NF-κß expression and inflammatory cytokines were also evident. PIC dose-dependently reduced ACF and restored oxidative stress and inflammatory markers favorably. Moreover, PIC in its large, tested dose only significantly increased the intracellular level of cAMP and suppressed the activation of Ras and PI3K and its downstream Akt/mTOR signaling. Furthermore, PIC promoted CRC apoptosis, and increased the gene expression of the apoptotic factors, caspase-3 and Bax, and decreased the anti-apoptotic factor Bcl-2. The results of this study show that PIC may be a promising therapeutic agent for the treatment of CRC. PIC might inhibit the proliferation of CRC cells and induce apoptosis via multiple mechanisms that involve its antioxidant effect and inhibition of NF-κß and Ras/PI3K/Akt/mTOR signaling.


Assuntos
1,2-Dimetilidrazina/antagonistas & inibidores , 1,2-Dimetilidrazina/toxicidade , Benzamidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Piridinas/farmacologia , Focos de Criptas Aberrantes/tratamento farmacológico , Focos de Criptas Aberrantes/metabolismo , Focos de Criptas Aberrantes/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/induzido quimicamente , Modelos Animais de Doenças , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas ras/metabolismo
6.
Front Neurosci ; 8: 129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904269

RESUMO

Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE) increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al., 2011; Wen et al., 2012). To determine if these effects were specific for PDE4, we compared nine PDE inhibitors with different subtype selectivity: propentofylline (nonspecific), vinpocetine (PDE1), olprinone, milrinone (PDE3), zaprinast (PDE5), rolipram, mesopram, piclamilast, and CDP840 (PDE4). Alcohol intake was measured in C57BL/6J male mice using 24-h two-bottle choice and two-bottle choice with limited (3-h) access to alcohol. Only the selective PDE4 inhibitors reduced ethanol intake and preference in the 24-h two-bottle choice test. For rolipram, piclamilast, and CDP840, this effect was observed after the first 6 h but not after the next 18 h. Mesopram, however, produced a long-lasting reduction of ethanol intake and preference. In the limited access test, rolipram, piclamilast, and mesopram reduced ethanol consumption and total fluid intake and did not change preference for ethanol, whereas CDP840 reduced both consumption and preference without altering total fluid intake. Our results provide novel evidence for a selective role of PDE4 in regulating ethanol drinking in mice. We suggest that inhibition of PDE4 may be an unexplored target for medication development to reduce excessive alcohol consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA