Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180418, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230571

RESUMO

In this article, we briefly summarize the experiments performed during the first run of the Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013-2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV energies in a plasma wakefield driven by a highly relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180392, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230573

RESUMO

The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

3.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180182, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230572

RESUMO

The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20190215, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230575

RESUMO

This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

5.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180185, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230578

RESUMO

New particle acceleration schemes open up exciting opportunities, potentially providing more compact or higher-energy accelerators. The AWAKE experiment at CERN is currently taking data to establish the method of proton-driven plasma wakefield acceleration. A second phase aims to demonstrate that bunches of about 109 electrons can be accelerated to high energy, preserving emittance and that the process is scalable with length. With this, an electron beam of [Formula: see text](50 GeV) could be available for new fixed-target or beam-dump experiments searching for the hidden sector, like dark photons. The rate of electrons on target could be increased by a factor of more than 1000 compared to that currently available, leading to a corresponding increase in sensitivity to new physics. Such a beam could also be brought into collision with a high-power laser and thereby probe the completely unmeasured region of strong fields at values of the Schwinger critical field. An ultimate goal is to produce an electron beam of [Formula: see text](3 TeV) and collide with an Large Hadron Collider proton beam. This very high-energy electron-proton collider would probe a new regime in which the structure of matter is completely unknown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA