RESUMO
Azithromycin is an antibiotic proposed as a treatment for the coronavirus disease 2019 (COVID-19) due to its immunomodulatory activity. The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there was an improvement in dispersibility of the chitosan-related formulations. It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggested the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19.
Assuntos
COVID-19 , Quitosana , Nanopartículas , Humanos , Azitromicina , Pós , Administração por Inalação , Tratamento Farmacológico da COVID-19 , Aerossóis e Gotículas Respiratórios , Tamanho da PartículaRESUMO
This study aimed to examine the impact of different surface properties of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (P NPs) and PLGA-Poloxamer nanoparticles (PP NPs) on their in vivo biodistribution. For this purpose, NPs were formulated via nanoprecipitation and loaded with diphenylhexatriene (DPH), a fluorescent dye. The obtained NPs underwent comprehensive characterization, encompassing their morphology, technological attributes, DPH release rate, and thermodynamic properties. The produced NPs were then administered to wild-type mice via intraperitoneal injection, and, at scheduled time intervals, the animals were euthanized. Blood samples, as well as the liver, lungs, and kidneys, were extracted for histological examination and biodistribution analysis. The findings of this investigation revealed that the presence of poloxamers led to smaller NP sizes and induced partial crystallinity in the NPs. The biodistribution and histological results from in vivo experiments evidenced that both, P and PP NPs, exhibited comparable concentrations in the bloodstream, while P NPs could not be detected in the other organs examined. Conversely, PP NPs were primarily sequestered by the lungs and, to a lesser extent, by the kidneys. Future research endeavors will focus on investigating the behavior of drug-loaded NPs in pathological animal models.
Assuntos
Nanopartículas , Poloxâmero , Camundongos , Animais , Portadores de Fármacos/química , Ácido Poliglicólico/química , Ácido Láctico/química , Distribuição Tecidual , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Tamanho da PartículaRESUMO
The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.
Assuntos
Glioblastoma , Nanopartículas , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Nanopartículas/química , Humanos , Glioblastoma/tratamento farmacológico , Administração Intranasal , Absorção Nasal , Linhagem Celular Tumoral , Animais , Ratos , Barreira HematoencefálicaRESUMO
BACKGROUND: Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4AâKDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. METHODS: In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. RESULTS: Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. CONCLUSIONS: These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC.
Assuntos
Antineoplásicos , Produtos Biológicos , Flavonoides , Neoplasias de Próstata Resistentes à Castração , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Glicolatos , Glicóis/farmacologia , Glicóis/uso terapêutico , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/farmacologia , Masculino , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêuticoRESUMO
PURPOSE: To evaluate the safety and toxicity profile of a chitosan (CS) and poly(lactic-co-glycolic) acid (PLGA)-based sustained release methotrexate (MTX) intravitreal micro-implant in normal rabbit eyes using non-invasive testing that included electroretinography (ERG), ultrasound biomicroscopy (US), slit-lamp biomicroscopy (SLB), funduscopy, and intraocular pressure (IOP). METHODS: PLGA-coated CS-based micro-implants containing 400 µg of MTX and placebo (without drug) micro-implants were surgically-implanted in the vitreous of the right and the left eyes, respectively, in each of the thirty New Zealand rabbits. ERG, US, SLB, funduscopy, and IOP were assessed in both eyes at pre-determined time points (days: 1, 3, 7, 14, 28 and 56). The safety of micro-implants was assessed by analyzing the ERG data using different statistical models, to quantify and compare the functional integrity of the retina. Further, US, funduscopy, SLB and IOP determined the condition of the retina, the micro-implant and associated intraocular features. RESULTS: Statistical analyses of the ERG data showed unchanged functional integrity of retina between eyes with the PLGA-coated CS-based MTX micro-implant and the placebo micro-implant. US analysis showed that micro-implants were stationary throughout the study. SLB, funduscopy and IOP further confirmed that there were no abnormalities in the intraocular physiology. CONCLUSION: The findings from ERG, US, SLB, funduscopy, and IOP showed no detectable adverse effects caused by our biodegradable micro-implants. These non-invasive techniques appeared to show lack of significant ocular toxicity over time in spite of degradation and changes in morphology of the micro-implants following intraocular implantation.
Assuntos
Imunossupressores/toxicidade , Metotrexato/toxicidade , Retina/efeitos dos fármacos , Corpo Vítreo/efeitos dos fármacos , Implantes Absorvíveis , Animais , Quitosana/administração & dosagem , Preparações de Ação Retardada , Portadores de Fármacos , Implantes de Medicamento , Eletrorretinografia/efeitos dos fármacos , Imunossupressores/administração & dosagem , Pressão Intraocular/efeitos dos fármacos , Injeções Intravítreas , Metotrexato/administração & dosagem , Microscopia Acústica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Coelhos , Microscopia com Lâmpada de FendaRESUMO
OBJECTIVE: This study investigated the effects of poly lactic-co-glycolic acid (PLGA) loaded with plasmid DNA encoding fibroblast growth factor-2 (pFGF-2) on human periodontal ligament cells (hPDLCs) in vitro and evaluated the ability of the PLGA/pFGF-2 scaffold to promote periodontal ligament (PDL) regeneration in a beagle dog teeth avulsion animal model. BACKGROUND: Growth factor and scaffold play important roles in PDL regeneration. PLGA is a kind of biodegradable and biocompatible polymer that can be used as a carrier to deliver growth factors or genes. FGF-2 can induce potent proliferative responses, promote cell migration and regulate the production of extracellular matrix. Therefore, a gene-activated matrix composed of scaffold and genes is supposed to be a superior approach for promoting tissue regeneration. METHODS: In this study, PLGA and PLGA/pFGF-2 scaffolds were fabricated using electrospinning. The characterization of scaffolds was shown by scanning electron microscope (SEM) and transmission electron microscope (TEM). dsDNA HS was used to test the plasmid release of PLGA/pFGF-2 scaffold. The viability and proliferation of hPDLCs on the two kinds of scaffolds were evaluated by the CCK-8 assay, and the expression of collagen I and scleraxis were analysed by RT-qPCR. The roots of avulsed teeth were covered by the two types of scaffolds and replanted into the alveolar pockets in beagles. Haematoxylin-eosin and Masson staining were used to evaluate the effects of PLGA/pFGF-2 scaffold on promoting PDL regeneration. RESULTS: The smooth and uniform fibres can be observed in both scaffolds, and the plasmids were randomly distributed in the PLGA/pFGF-2 scaffold. dsDNA HS analysis demonstrated that the PLGA/pFGF-2 scaffold released up to 123 ng pFGF-2 over 21 days in a sustained manner without any obvious burst release. The PLGA/pFGF-2 scaffold promoted the proliferation of hPDLCs and increased the expression levels of collagen I and scleraxis compared with PLGA scaffold. Animal experiments showed that more regular PDL-like tissues and less root surface resorption occurred in the PLGA/pFGF-2 scaffold group compared with the PLGA scaffold group. CONCLUSIONS: The PLGA/pFGF-2 scaffold promoted hPDLCs proliferation and facilitated periodontal ligament-related differentiation. The PLGA/pFGF-2 scaffold possesses excellent biological characteristics and could be used as a promising biomaterial for improving the treatment prognosis of replanted tooth.
Assuntos
Fator 2 de Crescimento de Fibroblastos , Ligamento Periodontal , Animais , Cães , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Glicolatos , Glicóis , Ligamento Periodontal/efeitos dos fármacos , Plasmídeos/genética , Alicerces Teciduais , Dente/transplanteRESUMO
BACKGROUND: Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine. METHODS: We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips. We then fabricated poly(methyl methacrylate) (PMMA)-based microfluidic chips embedding the PLGA nanofiber arrays and modified their surfaces through sequential coating with using biotin-(PEG)7-amine through EDC/NHS activation, streptavidin (SA), and biotinylated epithelial-cell adhesion-molecule antibody (biotin-anti-EpCAM) to achieve highly efficient CTC capture. When combined with an air foam technology that induced a high shear stress and, thereby, nondestructive release of the captured cells from the PLGA surfaces, the proposed device system operated with a high cell recovery rate. RESULTS: The morphologies and average diameters of the electrospun PLGA nanofibers were characterized using scanning electron microscopy (SEM) and confocal Raman imaging. The surface chemistry of the PLGA nanofibers conjugated with the biotin-(PEG)7-amine was confirmed through time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. The chip system was studied for the effects of the surface modification density of biotin-(PEG)7-amine, the flow rates, and the diameters of the PLGA nanofibers on the capture efficiency of EpCAM-positive HCT116 cells from the spiked liquid samples. To assess their CTC capture efficiencies in whole blood samples, the aligned and random PLGA nanofiber arrays were tested for their abilities to capture HCT116 cells, providing cancer cell capture efficiencies of 66 and 80%, respectively. With the continuous injection of air foam into the microfluidic devices, the cell release efficiency on the aligned PLGA fibers was 74% (recovery rate: 49%), while it was 90% (recovery rate: 73%) on the random PLGA fibers, from tests of 200 spiked cells in 2 mL of whole blood from healthy individuals. Our study suggests that integrated PMMA microfluidic chips embedding random PLGA nanofiber arrays may be suitable devices for the efficient capture and recovery of CTCs from whole blood samples.
Assuntos
Separação Celular/métodos , Nanofibras/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Biotina/química , Linhagem Celular Tumoral , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Polietilenoglicóis/químicaRESUMO
The purpose of this study was to evaluate the effects of a poly(lactic-co-glycolic acid) (PLGA) membrane containing fluvastatin on bone regeneration at bone defects in rat calvaria and tibia for possible use as a guided bone regeneration (GBR) membrane. PLGA and fluvastatin-containing PLGA (PLGA-fluvastatin) membranes were prepared and mechanical properties were evaluated. Standardized bony defects were created in rat calvaria and the right tibia, and covered with a PLGA or PLGA-fluvastatin membrane. Bone regeneration was evaluated using image analysis based on histologic examination. At 4 and 8 weeks after membrane implantation, the PLGA-fluvastatin group displayed enhanced new bone formation around the edge of the defect compared with the PLGA membrane group in the calvarial model. Thick bone regeneration was observed in tibia-defect sites in the PLGA-fluvastatin membrane group. These results suggest that the PLGA-containing fluvastatin membrane prepared in this study may potentially be used as a GBR membrane.
Assuntos
Regeneração Óssea/efeitos dos fármacos , Fluvastatina/farmacologia , Regeneração Tecidual Guiada/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Animais , Combinação de Medicamentos , Masculino , Teste de Materiais , Membranas Artificiais , Ratos , Ratos Wistar , Crânio/cirurgia , Resistência à Tração , Tíbia/cirurgiaRESUMO
Microfluidics is a promising system for efficiently optimizing the experimental conditions for preparing nanomedicines, such as self-assembled nanoparticles. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are promising drug carriers allowing sustained drug release. Here, we encapsulated the model drug curcumin, which has many pharmacological activities, into PLGA nanoparticles and investigated the effects of experimental conditions on the resulting PLGA nanoparticles using a microfluidics system with a staggered herringbone structure that can stir solutions through chaotic advection. The total flow rate and flow rate ratio of the solutions in the microfluidics system affected the diameters, polydispersity index, and encapsulation efficiency of the resulting PLGA nanoparticles and produced small, homogenous PLGA nanoparticles. The incorporation of polyethylene glycol (PEG)-PLGA into the PLGA nanoparticles reduced the particle size and improved the encapsulation efficiency. Initial burst release from the PLGA nanoparticles was prevented by the incorporation of PEG2000-PLGA. Curcumin-loaded PEGylated PLGA nanoparticles showed cytotoxicity similar to that of other formulations. This microfluidics system allows high throughput and is scalable for the efficient preparation of PLGA nanoparticles and PEGylated PLGA nanoparticles. Our results will be useful for developing novel PLGA-based polymer nanoparticles by using the microfluidics.
Assuntos
Curcumina/química , Composição de Medicamentos/instrumentação , Dispositivos Lab-On-A-Chip , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/toxicidade , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/toxicidade , Poliésteres/toxicidade , Polietilenoglicóis/toxicidadeRESUMO
In the development of drugs for intra-articular administration, sustained-release formulations are desirable because it is difficult to maintain the effect of conventional injections due to immediate drug leakage from the joint cavity. In this study, a sustained-release poly(lactic-co-glycolic acid) (PLGA) microsphere formulation for intra-articular administration containing indocyanine green (ICG) as a model drug was prepared to follow its fate after intra-articular administration in rats with a real-time in-vivo imaging system. ICG administered as an aqueous solution leaked from the joint cavity in a short time and was excreted outside the body within 1-3 d. However, ICG in the sustained-release formulation was retained in the joint cavity and released for 2 weeks. Next, a sustained-release formulation containing PLGA microspheres in a hyaluronic acid (HA) gel formulation was prepared. After gradual release in two stages, we could achieve sustained release for a longer period. It is considered that a combination formulation of PLGA microspheres and HA gel can significantly improve the sustained release of a drug administered into the knee joint.
Assuntos
Ácido Hialurônico/administração & dosagem , Ácido Láctico/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Esquema de Medicação , Composição de Medicamentos , Liberação Controlada de Fármacos , Géis , Ácido Hialurônico/química , Injeções Intra-Articulares , Articulação do Joelho , Ácido Láctico/química , Masculino , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-DawleyRESUMO
The guided bone regeneration (GBR) technique is often applied to provide sufficient bone for ideal implant placement. The objective of this study was to evaluate whether GC membrane®, which has already been used for guided tissue regeneration (GTR), can also be available for GBR. Twenty-three implants in 18 patients were evaluated in the study. All patients underwent implant placement with GBR using GC membrane®. Cone-beam computed tomography was performed at 13-30 weeks after surgery and the amount of augmented bone was assessed. The implant stability quotient (ISQ) was measured at the second operation to evaluate implant stability. Although wound dehiscence was observed at 4 of 23 regions (17.4%), all wounds closed quickly without any events by additional antibiotic administration. GBR-induced bone augmentation of 0.70-2.56 mm horizontally and 0-6.82 mm vertically. Only 0.18 mm of bone recession was observed at 16-24 months after implant placement. GBR with GC membrane® induced sufficient bone augmentation, leading to successful implant treatment. The present results suggest that GC membrane® is available not only for GTR, but also for GBR.
Assuntos
Implantes Absorvíveis , Aumento do Rebordo Alveolar/métodos , Regeneração Óssea , Implantação Dentária Endóssea/métodos , Implantes Dentários , Regeneração Tecidual Guiada/métodos , Membranas Artificiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Adulto , Idoso , Transplante Ósseo/métodos , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Resultado do TratamentoRESUMO
The treatment of long-segment tracheal defect requires the transplantation of effective tracheal substitute, and the tissue-engineered trachea (TET) has been proposed as an ideal tracheal substitute. The major cause of the failure of segmental tracheal defect reconstruction by TET is airway collapse caused by the chondromalacia of TET cartilage. The key to maintain the TET structure is the regeneration of chondrocytes in cartilage, which can secrete plenty of cartilage matrices. To address the problem of the chondromalacia of TET cartilage, this study proposed an improved strategy. We designed a new cell sheet scaffold using the poly(lactic-co-glycolic acid) (PLGA) and poly(trimethylene carbonate) (PTMC) to make a porous membrane for seeding cells, and used the PLGA-PTMC cell-scaffold to pack the decellularized allogeneic trachea to construct a new type of TET. The TET was then implanted in the subcutaneous tissue for vascularization for 2 weeks. Orthotopic transplantation was then performed after implantation. The efficiency of the TET we designed was analyzed by histological examination and biomechanical analyses 4 weeks after surgery. Four weeks after surgery, both the number of chondrocytes and the amount of cartilage matrix were significantly higher than those contained in the traditional stem-cell-based TET. Besides, the coefficient of stiffness of TET was significantly larger than the traditional TET. This study provided a promising approach for the long-term functional reconstruction of long-segment tracheal defect, and the TET we designed had potential application prospects in the field of TET reconstruction.
Assuntos
Condrogênese , Dioxanos/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Traqueia/transplante , Animais , Cartilagem/citologia , Cartilagem/fisiologia , Cartilagem/ultraestrutura , Células Cultivadas , Condrócitos/citologia , Ácido Láctico/química , Transplante de Células-Tronco Mesenquimais/métodos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Regeneração , Traqueia/lesões , Traqueia/ultraestruturaRESUMO
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Assuntos
Preparações de Ação Retardada/química , Ácido Láctico/química , Ácido Poliglicólico/química , Proteínas/química , Implantes Absorvíveis , Materiais Biocompatíveis/química , Composição de Medicamentos/métodos , Temperatura Alta , Microscopia Confocal/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Soroalbumina Bovina/química , Análise Espectral Raman/métodosRESUMO
Growth factor therapies to induce angiogenesis and thereby enhance the blood perfusion, hold tremendous potential to address the shortcomings of current impaired wound care modalities. Vascular endothelial growth factor stimulates (VEGF) wound healing via multiple mechanisms. Poly(lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. Hence, we hypothesized that the administration of VEGF encapsulated in PLGA nanoparticles (PLGA-VEGF NP) would promote fast healing due to the sustained and combined effects of VEGF and lactate. In a splinted mouse full thickness excision model, compared with untreated, VEGF and PLGA NP, PLGA-VEGF NP treated wounds showed significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis. The cellular and molecular studies revealed that PLGA-VEGF NP enhanced the proliferation and migration of keratinocytes and upregulated the expression of VEGFR2 at mRNA level. We demonstrated the combined effects of lactate and VEGF for active healing of non-diabetic and diabetic wounds. FROM THE CLINICAL EDITOR: The study of wound healing has been under a tremendous amount of research over recent years. In diabetic wounds, vasculopathy leading to localized ischemia would often result in delayed wound healing. In this article, the authors encapsulated vascular endothelial growth factor stimulates (VEGF) in PLGA nanoparticles and studies the potential pro-healing effects. It was found that the combination of these two components provided synergistic actions for healing. The encouraging results should provide a basis for combination therapy in the future.
Assuntos
Complicações do Diabetes/tratamento farmacológico , Ácido Láctico/uso terapêutico , Nanopartículas/uso terapêutico , Ácido Poliglicólico/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Ácido Láctico/administração & dosagem , Camundongos , Nanopartículas/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Peroxidase/metabolismo , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator A de Crescimento do Endotélio Vascular/administração & dosagemRESUMO
An amphiphilic Gd(III) complex has been efficiently loaded in polylactic-co-glycolic acid nanoparticles (PLGA-NPs) to yield a novel, high sensitive magnetic resonance imaging (MRI) contrast agent for imaging guided drug delivery applications. As the Gd(III) complex is soluble in organic solvents, the nanoparticles were prepared as oil/water emulsions. PLGA-NPs were stable, in buffer, for more than 1 week without any release of the incorporated agents. The millimolar relaxivity of the Gd(III) complex incorporated in the particles (140 nm diameter) was of 21.7 mM(-1) s(-1) at 21.5 MHz, a value that is about 5 times higher than that observed with the commercially available contrast agents used in clinic. The relaxometric efficiency of these particles resulted inversely proportional to the particle size measured by dynamic light scattering. The high stability and sensitivity of PLGA-NPs allowed their accumulation in vivo in murine melanoma xenograft as shown in the corresponding MR images. Once loaded with drug and contrast agents, PLGA nanoparticles can be proposed as efficient theranostic MRI agents.
Assuntos
Meios de Contraste/química , Desenho de Fármacos , Ácido Láctico/química , Imageamento por Ressonância Magnética/métodos , Melanoma Experimental/patologia , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células Tumorais CultivadasRESUMO
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
RESUMO
In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.
RESUMO
End groups of poly(Lactide-co-glycolide) (PLGA) play an important role in determining the properties of polymers for use in drug delivery systems. For instance, it has been reported that the encapsulation efficiency in PLGA microspheres varies significantly between ester-terminated and acid-terminated PLGA. More importantly, the in-vivo degradation time of such polymer excipients is influenced by the functional end-group of the copolymer used. The end group distribution in PLGA polymers has been studied using electrospray and matrix-assisted laser-desorption/ionization - high-resolution mass spectrometry. In both cases, the application of these methods is typically limited to PLGA having a molecular weight of up to 4 kDa. 13Carbon-nuclear-magnetic-resonance has also been reported as a method to differentiate and quantify PLGA end groups with a molecular weight up to 136 kDa. However, reported NMR methods take over 12 h per sample, limiting throughput.Cryoprobe NMR can reduce the time required for the process, however such NMR equipment is costly, which makes it unsuitable for the quality control of PLGA. Here, we present a normal-phase liquid chromatography method capable of resolving functionality type distribution (FTD) and, partially, chemical composition distribution (CCD) in commercial PLGA polymers obtained from ring opening polymerization. This method can separate PLGA polymers with a molecular weight of up to 183.0 kDa while also enabling the simultaneous separation of the difference of Lactic acid (LA)/Glycolic acid (GA) ratios. To achieve this, a cross-linked diol column was used with a ternary gradient from HEX to 0.1 % v/v TEA in EA to 0.1 % v/v FA in THF to allow first for the elution of mono-ester terminated PLGA, followed by the di-acid terminated. In addition, a separation of ester-terminated PLGA in the difference of the LA/GA ratio was achieved. This method is expected to aid in understanding the correlation between PLGA's FTD, CCD, and physical properties, facilitating product development and quality control.
Assuntos
Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Peso Molecular , Ácido Láctico/química , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética , Concentração de Íons de HidrogênioRESUMO
Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.
Assuntos
Carbamazepina , Preparações de Ação Retardada , Dexametasona , Liberação Controlada de Fármacos , Tecnologia de Extrusão por Fusão a Quente , Metformina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solubilidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Dexametasona/química , Dexametasona/administração & dosagem , Metformina/química , Metformina/administração & dosagem , Preparações de Ação Retardada/química , Carbamazepina/química , Carbamazepina/administração & dosagem , Tecnologia de Extrusão por Fusão a Quente/métodos , Implantes de Medicamento/química , Ácido Poliglicólico/química , Portadores de Fármacos/química , Temperatura Alta , Ácido Láctico/químicaRESUMO
This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release. The optimized formulation was obtained with 60 mg of dexamethasone and using an 80:20 dichloromethane:ethanol ratio. In the second step in the microencapsulation process, the incorporation of the glial cell line-derived neurotrophic factor (GDNF) was performed. The final prototype showed encapsulation efficiencies for each component above 50% with suitable properties for long-term application for at least 3 months. Physicochemical studies were performed by SEM, TEM, DSC, XRD, and gas chromatography. The evaluation of the kinetic release by the Gallagher-Corrigan analysis with Gorrasi correction helped to understand the influence of the co-microencapsulation on the delivery of the different actives from the optimized formulation. The final prototype was tested in a chronic glaucoma animal model. Rats received two intravitreal injections of the neuroprotective treatment within a 24-week follow-up study. The proposed formulation improved retinal ganglion cell (RGC) functionality examined by electroretinography. Also, it was able to maintain a neuroretinal thickness similar to that of healthy animals scanned by in vivo optical coherence tomography, and a higher RGC count on histology compared to glaucomatous animals at the end of the study.