RESUMO
Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.
RESUMO
Although hydrogen sulfide (H2S) is an endogenous signaling molecule with antioxidant properties, it is also cytotoxic by potently inhibiting cytochrome c oxidase and mitochondrial respiration. Paradoxically, the primary route of H2S detoxification is thought to occur inside the mitochondrial matrix via a series of relatively slow enzymatic reactions that are unlikely to compete with its rapid inhibition of cytochrome c oxidase. Therefore, alternative or complementary cellular mechanisms of H2S detoxification are predicted to exist. Here, superoxide dismutase [Cu-Zn] (SOD1) is shown to be an efficient H2S oxidase that has an essential role in limiting cytotoxicity from endogenous and exogenous sulfide. Decreased SOD1 expression resulted in increased sensitivity to H2S toxicity in yeast and human cells, while increased SOD1 expression enhanced tolerance to H2S. SOD1 rapidly converted H2S to sulfate under conditions of limiting sulfide; however, when sulfide was in molar excess, SOD1 catalyzed the formation of per- and polysulfides, which induce cellular thiol oxidation. Furthermore, in SOD1-deficient cells, elevated levels of reactive oxygen species catalyzed sulfide oxidation to per- and polysulfides. These data reveal that a fundamental function of SOD1 is to regulate H2S and related reactive sulfur species.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Sulfeto de Hidrogênio , Superóxido Dismutase-1 , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Sulfetos/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Lithium-sulfur (Li-S) batteries with high energy density and low cost are promising for next-generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self-discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li-S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single-Solvent, Single-Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li-S batteries. Among the designed electrolytes, Li-S cells using fluorinated-1,2-diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 °C, fluorinated-1,4-dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether-based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.
RESUMO
Innate immunity plays an important role in host defense against microbial infections. It also participates in activation of acquired immunity through cytokine production and antigen presentation. Pattern recognition receptors such as Toll-like receptors and nucleotide oligomerization domain-like receptors sense invading pathogens and associated tissue injury, after which inflammatory mediators such as pro-inflammatory cytokines and nitric oxide are induced. Supersulfides are molecular species possessing catenated sulfur atoms such as persulfide and polysulfide moieties. They have recently been recognized as important regulators in cellular redox homeostasis by acting as potent antioxidants and nucleophiles. In addition, recent studies suggested that supersulfides are critically involved in the regulation of innate immune and inflammatory responses. In this review, we summarize current knowledge of the chemistry and biology of supersulfides, with particular attention to their roles in regulation of innate immune, and inflammatory responses. Studies with animal models of infection and inflammation demonstrated the potent anti-inflammatory functions of supersulfides such as blocking pro-inflammatory signaling cascades, reducing oxidative stresses, and inhibiting replication of microbial pathogens including severe acute respiratory syndrome coronavirus 2. Precise understanding of how supersulfides regulate innate immune responses is the necessary requirement for developing supersulfide-based diagnostic as well as therapeutic strategies against inflammatory disorders.
Assuntos
Imunidade Adaptativa , Imunidade Inata , Animais , Transdução de Sinais , Citocinas , Receptores Toll-LikeRESUMO
The use of functional materials is a popular strategy to mitigate the polysulfide-induced accelerated aging of lithium-sulfur (Li-S) batteries. However, deep insights into the role of electrode design and formulation are less elaborated in the available literature. Such information is not easy to unearth from the existing reports on account of the scattered nature of the data and the big dissimilarities among the reported materials, preparation protocols, and cycling conditions. In this study, model functional materials known for their affinity toward polysulfide species, are integrated into the porous sulfur electrodes at different quantities and with various spatial distributions. The electrodes are assembled in 240 lithium-sulfur cells and thoroughly analyzed for their short- and long-term electrochemical performance. Advanced data processing and visualization techniques enable the unraveling of the impact of porous electrodes' formulation and design on self-discharge, sulfur utilization, and capacity loss. The results highlight and quantify the sensitivity of the cell performance to the synergistic interactions of catalyst loading and its spatial positioning with respect to the sulfur particles and carbon-binder domain. The findings of this work pave the road for a holistic optimization of the advanced sulfur electrodes for durable Li-S batteries.
RESUMO
Infrared nonlinear optical (IR NLO) materials play significant roles in laser technology. The novel functional building units (FBUs) are of great importance in constructing NLO materials with strong second harmonic generation (SHG). Herein, polysulfide anion [Sx]2- (x = 2, 3, 4, 5) units are investigated on NLO-related properties and structure-performance relationships. Theoretical calculations uncover that the [Sx]2- (x = 2, 3, 4, 5) units are potential IR NLO FBUs with large polarizability anisotropy (δ), hyperpolarizability (ß) and wide HOMO-LUMO gap. Fourteen crystals including [Sx]2- (x = 2, 3, 4, 5) units are calculated and analyzed. The results show that these units can result in a wide IR transmittance range, significant SHG effects, wide band gap Eg (Na2S4: Eg = 3.09 eV), and large birefringence Δn [BaS3 (P21212): Δn = 0.70]. More importantly, it is highlighted that the crystal materials including with [Sx]2- (x = 2, 3, 4, 5) groups are good candidates for the exploration of the outstanding IR NLO materials.
RESUMO
Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.
RESUMO
A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.
RESUMO
Lithium-sulfur batteries (LSBs) are considered a highly promising next-generation energy storage technology due to their exceptional energy density and cost-effectiveness. However, the practical use of current LSBs is hindered primarily by issues related to the "shuttle effect" of lithium polysulfide (LiPS) intermediates and the growth of lithium dendrites. In strongly solvating electrolytes, the solvent-derived solid electrolyte interphase (SEI) lacks mechanical strength due to organic components, leading to ineffective lithium dendrite suppression and severe LiPS dissolution and shuttling. In contrast, the weakly solvating electrolyte (WSE) can create an anion-derived SEI layer which can enhance compatibility with lithium metal anode, and restricting LiPS solubility. Herein, a WSE consisting of 0.4 м LiTFSI in the mixture of 1,4-dioxane (DX):dimethoxymethane (DMM) is designed to overcome the issues associated with LSB. Surface analyses confirmed the formation of a beneficial SEI layer rich in LiF, enabling homogeneous lithium deposition with an average Coulombic efficiency CE exceeding 99% over 100 cycles. Implementing the low-concentration WSE in Li||SPAN cells yielded an impressive initial specific capacity of 671 mAh g-1. This research highlights the advantages of WSE and offers the pathway for cost-effective electrolyte development, enabling the realization of high-performance LSBs.
RESUMO
Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.
RESUMO
The development of capable of simultaneously modulating the sluggish electrochemical kinetics, shuttle effect, and lithium dendrite growth is a promising strategy for the commercialization of lithium-sulfur batteries. Consequently, an elaborate preparation method is employed to create a host material consisting of multi-channel carbon microspheres (MCM) containing highly dispersed heterostructure Fe3O4-FeTe nanoparticles. The Fe3O4-FeTe@MCM exhibits a spontaneous built-in electric field (BIEF) and possesses both lithophilic and sulfophilic sites, rendering it an appropriate host material for both positive and negative electrodes. Experimental and theoretical results reveal that the existence of spontaneous BIEF leads to interfacial charge redistribution, resulting in moderate polysulfide adsorption which facilitates the transfer of polysulfides and diffusion of electrons at heterogeneous interfaces. Furthermore, the reduced conversion energy barriers enhanced the catalytic activity of Fe3O4-FeTe@MCM for expediting the bidirectional sulfur conversion. Moreover, regulated Li deposition behavior is realized because of its high conductivity and remarkable lithiophilicity. Consequently, the battery exhibited long-term stability for 500 cycles with 0.06% capacity decay per cycle at 5 C, and a large areal capacity of 7.3 mAh cm-2 (sulfur loading: 9.73 mg cm-2) at 0.1 C. This study provides a novel strategy for the rational fabrication of heterostructure hosts for practical Li-S batteries.
RESUMO
Despite the low competitive cost and high theoretical capacity of lithium-sulfur (Li-S) batteries, their practical application is severely hindered by the lithium polysulfide (LiPS) shuttling and low conversion efficiency. Herein, the electronic structure of hollow Titanium dioxide nanospheres is tunned by single Iron atom dopants that can cooperatively enhance LiPS absorption and facilitate desired redox reaction in practical Li-S batteries, further suppressing the notorious shuttle effect, which is consistent with theoretical calculations and in situ UV/vis investigation. The obtained electrode with massive active sites and lower energy barrier for sulfur conversions exhibits exceptional cycling stability after 500 cycles and high capacity under the sulfur loading of 10.53 mg cm-2. In particular, an Ah-level Li-S pouch cell is fabricated, further demonstrating that the synthetic strategy based on atomic-level design offers a promising route toward practical high-energy-density Li-S batteries.
RESUMO
Although lithium-sulfur batteries (LSBs) are considered as the promising next rechargeable storage system ascribing to their decent specific capacity of inorganic sulfur, the development is partially impeded by inferior electronic conductivity, severe shuttle effect, and large volume variation. To tackle the issues above, a great deal of effort is made on sulfur-containing polymer (SCP) that shows better electrochemical performance. Nevertheless, sluggish conversion of lithium polysulfides (LiPSs) obstructs battery performance yet. Herein, electrocatalytic LiPSs with full conversion by tailoring the interfacial electric field are discovered based on gold nanoparticles (AuNPs) anchored on sulfurized polyaniline (SPANI). A downhill path of Gibbs free energy from organosulfur polymer to intermediate product means more spontaneously and favorable for full conversion, as the significant enhancement of electron density of state in the vicinity of the HOMO level for the AuNPs increase the electron transition probability rate. This composite delivers satisfactory electrochemical performance, especially increased rate capacity of >300 mAh g-1. Furthermore, catalyst mechanism on molecule level is proposed that AuNPsdominate chemical enhancement and higher electron delocalizablility betweenAuNPs and LiPSs molecules. These results can erect a promising strategy for enhancing lithium polysulfides full conversion.
RESUMO
Both nitrogen-doped carbon (NC) and metal-nitrogen-carbon (MNC) materials have been extensively investigated in lithium-sulfur batteries to alleviate the "shuttle effect". MNC are generally synthesized using NC as the parent material, wherein nitrogen atoms in NC serve as the "bridge" to coordinate with metal atoms. So far, an important scientific issue has not been settled: does the introduction of metal sites into NC certainly enhance the Li-S battery performance? In this work, NC and MNC materials derived from the same precursor, a nitrogen-rich porous polymer, are systematically compared as cathode hosts for Li-S battery through theoretical calculations and experimental investigation. Li-S cell with NC as the cathode sulfur host exhibits better cycle performance at low current densities (0.1 and 0.2C), whereas MNC materials predominate at higher current densities (such as 1C and 2C). Based on theoretical calculation and experimental results, it is concluded that the introduction of metal sites into NC through nitrogen bonding promoted the catalytic capability for faster sulfur redox reaction kinetics, whereas the adsorption energy toward polysulfides decreased. This work provides important guidance for more targeted design of advanced materials for lithium-sulfur battery application in the future.
RESUMO
Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.
RESUMO
With high specific surface area, excellent polysulfide conversion activity, and fast electron/ion transfer at the interface, MXene-derived heterostructures can be employed as catalysts for lithium-sulfur (Li-S) batteries to accelerate sulfur redox kinetics and suppress shuttle effect. However, the preparation of MXene-derived heterostructures often requires high-temperature reactions, which can easily lead to the oxidation of MXene and sacrifice the electrical conductivity. Herein, a catalytic two-dimensional heterostructure (ZnS/MXene) was successfully synthesized via a mild method. The MXene skeleton retains the original nanosheet structure without oxidation. The in situ-grown ZnS nanospheres prevent the restacking of MXene nanosheets, which not only increases the active sites, but also guarantees channels for the fast passage of lithium ions. The interfacial built-in electric field further promotes electron/ion migration, thereby expediting the polysulfide conversion and suppressing the shuttle effect. Consequently, the batteries using ZnS/MXene modified separators exhibit a high initial discharge capacity of 1230 mAh g-1 at 0.1 C and a low decaying rate of 0.082% per cycle after 500 cycles at 0.5 C. This work offers a reference for the fabrication of MXene-based heterostructure in Li-S batteries.
RESUMO
The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701â mAh g-1) to 0.054 % per cycle (initial capacity of 1074â mAh g-1) over 400 cycles at 0.2â C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.
RESUMO
Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.
Assuntos
Glycine max , Alimentos de Soja , Humanos , Carne , EnxofreRESUMO
Lithium-sulfur batteries have a high energy density but lack cycle stability to reach market maturity. This is mainly due to the polysulfide shuttle mechanism, i. e., the leaching of active material from the cathode into the electrolyte and subsequent side reactions. We demonstrate how to attenuate the polysulfide shuttle by magnetron sputtering molybdenum oxysulfide, manganese oxide, and chromium oxide onto microporous polypropylene separators. The morphology of the amorphous coatings was analyzed by SEM and XRD. Electrochemical cyclization quantified how these coatings improved Coulombic efficiency and cycle stability. These tests were conducted in half cells. We compare the different performances of the different coatings with the known chemical and adsorption properties of the respective coating materials.
RESUMO
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600â Wh/kg and volumetric: 2800â Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.