Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33891876

RESUMO

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperonas/fisiologia , Neurônios/metabolismo , Proteostase , Envelhecimento/patologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Caseína Quinase I/genética , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Neurônios/patologia , Proteoma
2.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526462

RESUMO

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metaloendopeptidases/química , Metaloendopeptidases/genética , Modelos Biológicos , Mutagênese , Agregados Proteicos/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
3.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30982745

RESUMO

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Assuntos
Peptídeos beta-Amiloides/genética , Chaperonas Moleculares/genética , Agregação Patológica de Proteínas/genética , Peptídeos beta-Amiloides/química , Sítios de Ligação/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Luciferases/química , Luciferases/genética , Chaperonas Moleculares/química , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Domínios Proteicos/genética , Dobramento de Proteína , Ribossomos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
4.
Mol Cell ; 71(1): 155-168.e7, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979963

RESUMO

Protein self-assemblies modulate protein activities over biological timescales that can exceed the lifetimes of the proteins or even the cells that harbor them. We hypothesized that these timescales relate to kinetic barriers inherent to the nucleation of ordered phases. To investigate nucleation barriers in living cells, we developed distributed amphifluoric FRET (DAmFRET). DAmFRET exploits a photoconvertible fluorophore, heterogeneous expression, and large cell numbers to quantify via flow cytometry the extent of a protein's self-assembly as a function of cellular concentration. We show that kinetic barriers limit the nucleation of ordered self-assemblies and that the persistence of the barriers with respect to concentration relates to structure. Supersaturation resulting from sequence-encoded nucleation barriers gave rise to prion behavior and enabled a prion-forming protein, Sup35 PrD, to partition into dynamic intracellular condensates or to form toxic aggregates. Our results suggest that nucleation barriers govern cytoplasmic inheritance, subcellular organization, and proteotoxicity.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citometria de Fluxo , Fatores de Terminação de Peptídeos/genética , Proteínas Priônicas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 71(5): 675-688.e6, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193095

RESUMO

Self-propagating, amyloidogenic mutant huntingtin (mHTT) aggregates may drive progression of Huntington's disease (HD). Here, we report the development of a FRET-based mHTT aggregate seeding (FRASE) assay that enables the quantification of mHTT seeding activity (HSA) in complex biosamples from HD patients and disease models. Application of the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and knockin mice and its progressive increase with phenotypic changes, suggesting that HSA quantitatively tracks disease progression. Biochemical investigations of mouse brain homogenates demonstrated that small, rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Finally, we assessed the neurotoxicity of mHTT seeds in an inducible Drosophila model transgenic for HTTex1. We found a strong correlation between the HSA measured in adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays detect disease-relevant, neurotoxic, mHTT structures with severe phenotypic consequences in vivo.


Assuntos
Biomarcadores/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Drosophila/genética , Drosophila/metabolismo , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
6.
FASEB J ; 37(8): e23116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498235

RESUMO

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Humanos , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Proteostase , Núcleo Celular/metabolismo , Laminas/genética , Laminas/metabolismo , Laminopatias/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
7.
Cell Mol Life Sci ; 80(11): 342, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904059

RESUMO

Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.


Assuntos
Arsênio , Metaloides , Doenças Neurodegenerativas , Humanos , Arsênio/toxicidade , Antimônio/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Dano ao DNA
8.
J Cell Physiol ; 238(10): 2481-2498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37750538

RESUMO

The mechanism of aging has always been the focus of research, because aging is related to disease susceptibility and seriously affects people's quality of life. The diseases also accelerate the aging process, especially the pathological changes of substantive organs, such as cardiac hypertrophy, severely shortened lifespan. So, lesions in organs are both a consequence and a cause of aging. However, the disease in a given organ is not in isolation but is a systemic problem. Our previous study found that thyrotoxicosis mice model has aging characteristics including immunosenescence, lipotoxicity, malnutrition. But all these characteristics will lead to organ senescence, therefore, this study continued to study the aging changes of important organs such as heart, liver, and kidney in thyrotoxicosis mice using tandem mass tags (TMT) proteomics method. The results showed that the excess thyroxine led to cardiac hypertrophy. In the liver, the ability to synthesize functional proteins, detoxify, and metabolism were declined. The effect on the kidney was the decreased ability of detoxify and metabolism. The main finding of the present study was that the acceleration of organ senescence by excess thyroxine was due to proteotoxicity. The shared cause of proteotoxicity in the three organs included the intensify of oxidative phosphorylation, the redundancy production of ribosomes, and the lack of splicing and ubiquitin proteasome system function. Totally, proteotoxicity was another parallel between thyrotoxicosis and aging in addition to lipotoxicity. Our research provided a convenient and appropriate animal model for exploring aging mechanism and antiaging drugs.

9.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761265

RESUMO

Protein abnormalities can accelerate aging causing protein misfolding diseases, and various adaptive responses have evolved to relieve proteotoxicity. To trigger these responses, cells must detect the buildup of aberrant proteins. Previously we demonstrated that the Hsp70-Bag3 (HB) complex senses the accumulation of defective ribosomal products, stimulating signaling pathway proteins, such as stress kinases or the Hippo pathway kinase LATS1. Here, we studied how Bag3 regulates the ability for LATS1 to regulate its key downstream target YAP (also known as YAP1). In naïve cells, Bag3 recruited a complex of LATS1, YAP and the scaffold AmotL2, which links LATS1 and YAP. Upon inhibition of the proteasome, AmotL2 dissociated from Bag3, which prevented phosphorylation of YAP by LATS1, and led to consequent nuclear YAP localization together with Bag3. Mutations in Bag3 that enhanced its translocation into nucleus also facilitated nuclear translocation of YAP. Interestingly, Bag3 also controlled YAP nuclear localization in response to cell density, indicating broader roles beyond proteotoxic signaling responses for Bag3 in the regulation of YAP. These data implicate Bag3 as a regulator of Hippo pathway signaling, and suggest mechanisms by which proteotoxic stress signals are propagated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Via de Sinalização Hippo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Biochem Soc Trans ; 51(6): 2117-2126, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987513

RESUMO

Mitochondria are vital to the functions of eukaryotic cells. Most mitochondrial proteins are transported into the organelle following their synthesis by cytoplasmic ribosomes. However, precise protein targeting is complex because the two diverse lipid membranes encase mitochondria. Efficient protein translocation across membranes and accurate sorting to specific sub-compartments require the cooperation of multiple factors. Any failure in mitochondrial protein import can disrupt organelle fitness. Proteins intended for mitochondria make up a significant portion of all proteins produced in the cytosol. Therefore, import defects causing their mislocalization can significantly stress cellular protein homeostasis. Recognition of this phenomenon has increased interest in molecular mechanisms that respond to import-related stress and restore proteostasis, which is the focus of this review. Significantly, disruptions in protein homeostasis link strongly to the pathology of several degenerative disorders highly relevant in ageing societies. A comprehensive understanding of protein import quality control will allow harnessing this machinery in therapeutic approaches.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Proteínas Mitocondriais/metabolismo , Transporte Biológico , Citosol/metabolismo
11.
Cell Mol Life Sci ; 79(11): 574, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36308570

RESUMO

Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.


Assuntos
Doenças Neurodegenerativas , Ubiquitina , Humanos , Ubiquitina/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
12.
Genes Dev ; 29(19): 2010-21, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26404941

RESUMO

An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state.


Assuntos
Aneuploidia , Autofagia/genética , Lisossomos/patologia , Estresse Fisiológico/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Complexo de Endopeptidases do Proteassoma , Agregados Proteicos/fisiologia , Dobramento de Proteína , Proteólise
13.
J Neurosci Res ; 100(10): 1834-1844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35819247

RESUMO

Parkinson's disease (PD) pathology is the most common motor neurodegenerative disease that occurs due to the progressive degeneration of dopaminergic neurons of the nigrostriatal pathway of the brain. The histopathological hallmark of the disease is fibrillary aggregate called Lewy bodies which majorly contain α-synuclein, suggesting the critical implication of diminished protein degradation mechanisms in disease pathogenesis. This α-synuclein-containing Lewy bodies are evident in both experimental models as well as in postmortem PD brain and are speculated to be pathogenic but still, the lineal association between these aggregates and the complexity of disease pathology is not yet well established and needs further attention. However, it has been reported that α-synuclein aggregates have consorted with the declined proteasome and lysosome activities. Therefore, in this review, we reappraise intracellular protein degradation mechanisms during PD pathology. This article focused on the findings of the last two decades suggesting the implications of protein degradation mechanisms in disease pathogenesis and based on shreds of evidence, some of the approaches are also suggested which may be adopted to find out the novel therapeutic targets for the management of PD patients.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Complexo de Endopeptidases do Proteassoma , Proteólise , alfa-Sinucleína/metabolismo
14.
Toxicol Appl Pharmacol ; 445: 116041, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504338

RESUMO

Transcription factors HIF1 and HIF2 are central regulators of physiological responses to hypoxia and important for normal functioning of tissue stem cells and maintenance of healthy microvasculature. Even modest decreases in HIF activity exert detrimental effects in tissues although it is unclear what factors can directly impair HIF functions. We hypothesized that the presence of functionally important, large intrinsically disordered regions in HIFα subunits of HIF1/2 could make them structurally vulnerable to protein-damaging conditions. We found that common protein-damaging agents such as endogenous/exogenous aldehydes (formaldehyde, acetaldehyde), moderate heat shock and the environmental toxicant cadmium cause inactivation of HIF1 and HIF2 due to structural damage to HIFα subunits. Aldehydes triggered a rapid and selective depletion of HIF1α and HIF2α, which occurred as a result of enhanced binding of Pro-hydroxylated/VHL-ubiquitinated HIFα by 26S proteasomes. In the absence of proteasomal degradation, aldehyde-damaged HIF1 and HIF2 were transactivation defective and HIFα subunits became insoluble/denatured when their VHL-mediated ubiquitination was blocked. Protein damage by heat shock and cadmium resulted in the insolubility of Pro-nonhydroxylated HIFα. Thus, VHL-dependent ubiquitination of damaged HIFα also acts as means to maintain their solubility, permitting capture by proteasomes. The observed control of HIFα stability at the point of proteasome binding may extend to several posttranslational modifications that occur in the conformationally flexible regions of these proteins. Our findings revealed vulnerability of HIF1 and HIF2 to direct inactivation by protein-damaging agents, which helps understand their tissue injury mechanisms and favorable responses of hypoxic tumors to hyperthermia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cádmio , Aldeídos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cádmio/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquitinação
15.
Mol Cell Proteomics ; 19(4): 640-654, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086375

RESUMO

C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.


Assuntos
Arginina/metabolismo , Arginina/toxicidade , Proteína C9orf72/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(17): 8360-8369, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30971495

RESUMO

In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Estabilidade Proteica , Amiloide/química , Amiloide/metabolismo , Amiloidose , Ensaios de Triagem em Larga Escala , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Cinética , Multimerização Proteica
17.
Proc Natl Acad Sci U S A ; 116(27): 13384-13393, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213543

RESUMO

Sensing misfolded proteins in the endoplasmic reticulum (ER), cells initiate the ER stress response and, when overwhelmed, undergo apoptosis. However, little is known about how cells prevent excessive ER stress response and cell death to restore homeostasis. Here, we report the identification and characterization of cellular suppressors of ER stress-induced apoptosis. Using a genome-wide CRISPR library, we screen for genes whose inactivation further increases ER stress-induced up-regulation of C/EBP homologous protein 10 (CHOP)-the transcription factor central to ER stress-associated apoptosis. Among the top validated hits are two interacting components of the polycomb repressive complex (L3MBTL2 [L(3)Mbt-Like 2] and MGA [MAX gene associated]), and microRNA-124-3 (miR-124-3). CRISPR knockout of these genes increases CHOP expression and sensitizes cells to apoptosis induced by multiple ER stressors, while overexpression confers the opposite effects. L3MBTL2 associates with the CHOP promoter in unstressed cells to repress CHOP induction but dissociates from the promoter in the presence of ER stress, whereas miR-124-3 directly targets the IRE1 branch of the ER stress pathway. Our study reveals distinct mechanisms that suppress ER stress-induced apoptosis and may lead to a better understanding of diseases whose pathogenesis is linked to overactive ER stress response.


Assuntos
Apoptose , Sistemas CRISPR-Cas , Estresse do Retículo Endoplasmático , Animais , Retículo Endoplasmático/metabolismo , Fibroblastos , Técnicas de Inativação de Genes , Genes Supressores , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Camundongos , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas
18.
Anim Biotechnol ; : 1-12, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542527

RESUMO

Lead (Pb), a toxic environmental pollutant, is hazardous to the health of humans and birds. Bursa of Fabricius (BF) is a unique organ of birds. Toxic substances can attack BF and induce proteotoxicity. Increased heat shock proteins (HSPs) can induce oxidative damage. Selenium (Se) can alleviate harmful substance-caused oxidative damage. This study aimed to investigate whether Pb can cause oxidative damage and proteotoxicity, as well as Se reverse Pb-caused chicken BF toxicity. A model of chickens treated with Se and Pb alone and in combination was established. BFs were collected on days 30, 60, and 90. H&E and qRT-PCR were performed to observe the microstructure and to detect HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA levels, respectively, in BFs. Multivariate correlation analysis and principal component analysis were conducted to explore the correlation among the five HSPs. In our results, Pb caused BF damage and up-regulated the five HSPs at three time points, causing oxidative damage and proteotoxicity via HSP27-HSP40-HSP70-HSP90 pathway. Furthermore, Pb caused time-dependent stress on HSP27, HSP40, HSP60, and HSP70. In addition, Se relieved Pb-caused damage and up-regulation of HSPs. Taken together, we concluded that Se alleviated Pb-caused oxidative injury and proteotoxicity in chicken BFs via the HSP27-HSP40-HSP70-HSP90 pathway.

19.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232578

RESUMO

A clear relationship between the tau assemblies and toxicity has still to be established. To correlate the tau conformation with its proteotoxic effect in vivo, we developed an innovative cell-worm-based approach. HEK293 cells expressing tau P301L under a tetracycline-inducible system (HEK T-Rex) were employed to produce different tau assemblies whose proteotoxic potential was evaluated using C. elegans. Lysates from cells induced for five days significantly reduced the worm's locomotor activity. This toxic effect was not related to the total amount of tau produced by cells or to its phosphorylation state but was related to the formation of multimeric tau assemblies, particularly tetrameric ones. We investigated the applicability of this approach for testing compounds acting against oligomeric tau toxicity, using doxycycline (Doxy) as a prototype drug. Doxy affected tau solubility and promoted the disassembly of already formed toxic aggregates in lysates of cells induced for five days. These effects translated into a dose-dependent protective action in C. elegans. These findings confirm the validity of the combined HEK T-Rex cells and the C. elegans-based approach as a platform for pharmacological screening.


Assuntos
Tauopatias , Animais , Caenorhabditis elegans , Doxiciclina/farmacologia , Células HEK293 , Humanos , Proteínas tau
20.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164285

RESUMO

Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet ß-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of ß-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP-membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Pâncreas/patologia , Agregação Patológica de Proteínas/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Pâncreas/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA