Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 114(6): 1353-1368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942473

RESUMO

Pumpkin is often used as a rootstock for other Cucurbitaceae crops due to its resistance to soil-borne diseases and abiotic stress. Pumpkin rootstocks use a sodium transporter (CmHKT1;1) to promote the transport of Na+ from the shoot to the root effectively and improve the salt tolerance of the scion. However, the molecular regulatory mechanisms that influence the activity of CmHKT1;1 during salt stress response remain unknown. In this study, CmCNIH1, a cornichon homolog, was identified as a potential cargo receptor for CmHKT1;1. Yeast two-hybrid, biomolecular fluorescence complementation and luciferase complementary assays demonstrated that CmCNIH1 and CmHKT1;1 could interact. CmCNIH1 was a key component of the cellular vesicle transport machinery located in the endoplasmic reticulum (ER), ER export site and Golgi apparatus. A CmCNIH1 knockout mutant was more sensitive to salt stress than the wild-type (WT). In addition, ion homeostasis was disrupted in cmcnih1 mutants, which had higher Na+ and lower K+ content in shoots and roots than the WT. Two-electrode voltage-clamp experiment displayed that CmCNIH1 could not influence the Na+ current that passed through the plasma membrane (PM) in CmHKT1;1-expressing Xenopus laevis oocytes. Data from co-localization assays indicated that intact CmCNIH1 protein could alter the subcellular localization of CmHKT1;1 in tobacco leaf, pumpkin root and yeast. In summary, CmCNIH1 may function as a cargo receptor that regulates the localization of CmHKT1;1 to the PM to improve salt tolerance in pumpkin.


Assuntos
Cucurbita , Cucurbita/metabolismo , Tolerância ao Sal , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632532

RESUMO

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Assuntos
Anisóis , Cucurbita , Metiltransferases , Metiltransferases/genética , Melhoramento Vegetal , Polinização , Plantas/metabolismo , Flores/metabolismo , Catálise
3.
New Phytol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117354

RESUMO

The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.

4.
J Anat ; 244(2): 232-248, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898559

RESUMO

Anurans of the genus Brachycephalus are among the smallest vertebrates in the world, due to an extreme process of miniaturization. As an example of this process, Brachycephalus species show loss of fingers, loss of the eardrum and middle ear, bone fusions, and the presence of paravertebral plates and parotic plaque. However, no studies addressing the consequences of miniaturization on internal organs, such as the lungs and heart, are currently available. Thus, this study aimed to investigate if overall small body size has affected the cardiorespiratory system. We investigated, via dissections, individuals of four Brachycephaloidea species: Brachycephalus rotenbergae, B. pitanga, Eleutherodactylus johnstonei, and Ischnocnema parva. We observed that B. rotenbergae and B. pitanga present a reduction of the atrial septum and absence of the carotid body. On the other hand, despite being a member of the sister genus to Brachycephalus (both genera belong to the Brachycephalidae), individuals of Ischnocnema present a heart with a complete septum and carotid body; this is also observed in E. johnstonei (Eleutherodactylidae). We observed that B. rotenbergae and B. pitanga have thin skin with a one to two cell thick germ layer, and their lungs likely exhibit lower blood supply when compared to individuals of the E. johnstonei and I. parva species. Based on the observed structures, we suggest that in species of Brachycephalus, respiration is performed mainly through the skin, and their lungs may have a reduced respiratory function.


Assuntos
Anuros , Coração , Humanos , Animais
5.
Microb Pathog ; 194: 106844, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128644

RESUMO

This study investigated the effect of pumpkin powder (2 %, 4 %, and 6 %) and Enterococcus faecium and Enterococcus faecalis probiotics on the physicochemical, microbiological, and sensory properties of yogurt samples during 28 days of storage at 4 °C. The prebiotic effect of pumpkin powder (Cucurbita pepo) and the probiotic effect of Enterococcus faecium and E. faecalis were determined. Adding pumpkin powder to yogurt did not significantly alter the pH, acidity, fat, protein, and ash content (p > 0.05). Water holding was not changed during the storage time in the samples of probiotic yogurts, but as the pumpkin powder content increased, the water holding capacity also increased (p < 0.05). This situation did lead to a reduction in syneresis (p < 0.05). The lowest gumminess value at the end of storage was found in the D2 sample (p < 0.05), and the highest adhesiveness value was found in the D4 sample (p < 0.05). Furthermore, throughout the 28-day storage period, E. faecium and E. faecalis maintained a live cell count of ≥6 log CFU g-1 in the probiotic product. As a result of the statistical evaluation, there was a decrease in E. faecium in the D4, S2, and S4 samples, and then it increased again (p > 0.05) during the storage time. As a result of the statistical evaluation, it was determined that the smell, consistency in the spoon, consistency in the mouth, flavor, and acidity changes during the storage were not substantial (p > 0.05). In conclusion, it was found that pumpkin, a byproduct of the pumpkin seed industry, has the potential to act as a prebiotic and improve the properties of dairy products. Additionally, the study suggests that E. faecium and E. faecalis strains could be suitable for probiotic yogurts.

6.
J Chem Ecol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722477

RESUMO

Zeugodacus cucurbitae and Z. tau are two major fruit fly pests of cucurbitaceous plants in the tropical and subtropical regions. The former species has a broader host range and wider world distribution than the latter. With global climate change, Z. tau shows great potential for geographical expansion with several invasion records in recent years. Males of both species are attracted to cue lure (CL) (and raspberry ketone (RK), a deacetyl derivative of CL), a common male lure used in fruit fly population detection, monitoring and control programs. Males of both species are also known to respond to zingerone (ZN), which are produced by some rainforest orchids. Previous studies have shown that fruit fly-male lure interactions are unique to species and lure types, and significantly impact the success of a lure-based fruit fly control program. We seek to compare the attraction of Z. cucurbitae and Z. tau males to CL, RK and ZN via Probit behavioral assays. Our results showed that CL is more attractive to Z. cucurbitae and Z. tau males than RK, while ZN is a poor lure for both species. Attraction Z. tau to CL is slightly lower than Z. cucurbitae, but the former is at least 1.71 times less attractive to RK than the latter. Together with published information on species' sexual development, our current study indicates a lure-based control program via male annihilation technique for Z. tau will be more challenging than Z. cucurbitae and should incorporate other integrated pest management strategies for a desirable outcome.

7.
Plant Dis ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831590

RESUMO

Pumpkin (Cucurbita moschata), which belongs to the gourd family (Cucurbitaceae), is widely planted throughout the world. In June 2023, many pumpkin plants (cv. Miben) displayed leaf blight and chlorosis in fields located in Suizhou (31.99°N, 113.02°E), Hubei Province, China. The disease incidence ranged from 30 to 40% in nine fields, 6.3 ha in total. The symptoms were irregularly shaped lesions that expanded along the mid-vein until the leaf turned brown and wilted. Fungal isolations were performed as described previously (Liu et al. 2023). Twenty pumpkin leaf samples with typical symptoms were collected and cut into 1 cm×1 cm pieces. The diseased tissue was surface-sterilized in 75% ethanol for 30 sec, plated on potato dextrose agar (PDA) medium and incubated at 25℃ for 3 days. Then, the emerging single fungal hyphal tip was transferred onto PDA plates to obtain purified isolates. A total of eighteen isolates on PDA plates were initially white and then developed to dark gray. The 5-day-old cultures growing on mung bean medium produced conidia that were black, single-celled, smooth, spherical or oblate, and ranged in size from 14.5 to 20.8 µm×13.3 to 20.5 µm (n=50). Therefore, the isolates were morphologically identified as Nigrospora sphaerica. Moreover, the genomic DNA of the isolates (HB-P1,HB-P2, and HB-P3) was extracted for amplification and sequencing of the regions of internal transcribed spacer (ITS) (White et al. 1990), nuclear large subunit rRNA (nLSU) (O'Donnell 1992; Rehner and Samuels 1994), and ß-tubulin (TUB2) (Glass and Donaldson 1995), with primers ITS1/ITS4, LROR/LR3, and Bt2a/Bt2b, respectively. Sequences were submitted to GenBank under accession numbers PP348112, PP348113, PP348114 (ITS), PP411414, PP411415, PP411416 (nLSU), and PP357438, PP357439, PP357440 (TUB2). BLASTn showed that the sequences ITS, nLSU, and TUB2 of HB-P1, HB-P2, and HB-P3 had >99% nucleotide identities ((ITS: 100%, 508/508 bp, MF996488.1; 99.8%, 506/507, ON326588.1; 100%, 500/500 ,MK748317.1), (nLSU: 99.83%, 573/574, KT462720.1; 99.83% , 574/575 bp, KT462720.1; 99.65%, 575/577, KT462720.1), and (TUB2: 100%, 388/388, MN719407.1; 99.74%, 387/388, MN719407.1; 100%, 387/387, MN719407.1)) with Nigrospora sphaerica, respectively. A multilocus (ITS, nLSU and TUB2) phylogenetic analysis indicated that the isolates were Nigrospora sphaerica. Pathogenicity of three isolates were tested on pumpkin plants (cv. Miben). Fifteen pumpkin plants were inoculated by spraying the leaves (1×106 spores/ml), respectively, and 10 pumpkin plants were treated with sterile water as a negative control. All plants were incubated in an artificial climate box (LongYue, ShangHai) at 25℃ for 12 days. The experiment was repeated three times. Twelve days later, the inoculated pumpkin plants developed symptoms of leaf blight, while the control plants remained healthy. Then, pathogens were re-isolated from the each leaf of inoculated pumpkin plants and not from the control plants. Nigrospora sphaerica has been previously reported to cause leaf spot on watermelon in Malaysia (Ismail and Abd Razak 2021). To our knowledge, this is the first report of N. sphaerica causing leaf blight on pumpkin in China. This new disease can cause leaf blight, which may affect pumpkin productivity.

8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612673

RESUMO

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Assuntos
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiômica , Regulação para Baixo , Carotenoides , Glucose
9.
J Sci Food Agric ; 104(2): 572-582, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37650308

RESUMO

Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.


Assuntos
Cucurbita , Cucurbita/química , Ácidos Graxos/química , Tocoferóis/análise , Antioxidantes/química , Sementes/química , Óleos de Plantas/química
10.
J Helminthol ; 98: e25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509855

RESUMO

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Assuntos
Biomphalaria , Cucurbita , Moluscocidas , Esquistossomose , Animais , Schistosoma mansoni , Caramujos , Cercárias , Moluscocidas/farmacologia , Óleos de Plantas/farmacologia
11.
Plant Foods Hum Nutr ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951376

RESUMO

Chronic diseases like cancer and diabetes are the major public health concerns of India and worldwide. Nowadays, plant-derived products are in great demand for the treatment of these diseases. Pumpkin seeds are traditionally implicated for their pharmacological properties, as exemplified by benign prostatic hyperplasia. Earlier, pumpkin seed proteins were extracted by the Osborne method, and their functional and nutritional qualities were evaluated. Here, the aim is to assess in vitro, the anticancer and antidiabetic properties of seed protein fractions. HepG2, MDA-MB-231, and MCF-7 cell lines were treated with water-soluble (WF) and alkali-soluble fractions (AF) to assess cytotoxicity, while pancreatic ß-cells and insulin resistance (IR) - HepG2 cell lines were treated with WF to evaluate the antidiabetic potential. WF and AF showed cytotoxic effects towards HepG2 and MDA-MB-231 cell lines, suggesting apoptosis-mediated anticancerous activity. WF potentiates glucose-stimulated insulin secretion in pancreatic ß-cells, in a dose-dependent manner. In IR-HepG2 cell line studies, control, metformin, and WF-treated groups showed uptake of glucose, when compared to the diabetic group, which is well-correlated with the upregulated expressions of GLUT2 and GLUT4 transporters in these groups. These results indicate that proteins from WF and AF may have anticancerous and antidiabetic properties and thus have the potential to utilize pumpkin proteins in the management of cancer and diabetes.

12.
Plant Foods Hum Nutr ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105985

RESUMO

Mesoamerica is the center of origin of a great number of food crops that nowadays are part of a healthy diet. Pre-Columbian civilizations utilized more than 90% of these foods as ingredient or in main dishes, as well as for remedies and religious ceremonies. Since several years ago, Mesoamerican foods have been recognized by their outstanding concentration of bioactive compounds, including, phenolic compounds, pigments, essential fatty acids, amino acids, peptides, carbohydrates and vitamins, which provide a great number of health benefits. As a result of their unique composition, these ancient crops have several positive effects, such as hypoglycemic, antioxidant, anti-obesity, anti-inflammatory, anti-ageing, neuroprotective, anti-diarrheal, and anti-hypercholesterolemic capacity. Hence, this review is focused mainly in the anti-obesity and antioxidant potential of some of the most cultivated, harvested, as well as commercialized and consumed, food crops native of Mesoamerica, like, nopal and its fruit (Opuntia ficus indica spp.), chia (Salvia hispanica L.), pumpkin (Cucurbita spp.) and cacao (Theobroma cacao).

13.
Am J Bot ; 110(2): e16126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633920

RESUMO

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for understanding the variation in evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory spanning the geographic range of a plant-insect complex is logistically difficult. Recently, new methods have been developed using herbarium specimens to investigate patterns in plant-insect symbioses across large geographic scales. Such investigations provide insights into how accelerated anthropogenic changes may impact plant-insect interactions that are of ecological or agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples to investigate variation in herbivory damage in 13 different species of the economically important plant genus Cucurbita (Cucurbitaceae). This collection is composed of specimens of wild, undomesticated Cucurbita that were collected from across their native range, and Cucurbita cultivars collected from both within their native range and from locations where they have been introduced for agriculture in temperate North America. RESULTS: Herbivory is common on individuals of all Cucurbita species collected throughout their geographic ranges. However, estimates of herbivory varied considerably among individuals, with mesophytic species accruing more insect damage than xerophytic species, and wild specimens having more herbivory than specimens collected from human-managed habitats. CONCLUSIONS: Our study suggests that long-term evolutionary changes in habitat from xeric to mesic climates and wild to human-managed habitats may mediate the levels of herbivory pressure from coevolved herbivores. Future investigations into the potential factors that contribute to herbivory may inform the management of domesticated crop plants and their insect herbivores.


Assuntos
Cucurbita , Humanos , Animais , Herbivoria , Insetos , Ecossistema , Evolução Biológica , Plantas
14.
Prostaglandins Other Lipid Mediat ; 166: 106730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931593

RESUMO

As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17ß-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κß), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, ß) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, ß compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.


Assuntos
Cucurbita , Terapia de Reposição de Estrogênios , Feminino , Estradiol/farmacologia , Estrogênios/farmacologia , Pós-Menopausa , Animais , Ratos
15.
J Dairy Sci ; 106(3): 1803-1814, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710188

RESUMO

This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.


Assuntos
Cucurbita , Leite , Feminino , Bovinos , Animais , Lactação , Ácidos Graxos , Rúmen , Farinha , Ração Animal/análise , Dieta/veterinária , Bactérias , Sementes , Zea mays
16.
Plant Dis ; 107(12): 3851-3857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37272044

RESUMO

Plant grafting can provide resistance to nematodes. There is a distinct need to determine the role of Meloidogyne incognita-resistant rootstocks on the growth and quality of grafted cucumber plants. Cucumber (Cucumis sativus L.) cultivar Jinchun No. 4 (J) was hole grafted onto the pumpkin (Cucurbita moschata) cultivars Xiuli (X), Banzhen No. 3 (B), and its root to generate JX, JB, and JJ plants. The histopathology and M. incognita development associated with JX, JB, and JJ were analyzed under incubator and high plastic tunnel conditions. Under incubator conditions, M. incognita root galls and egg mass indices associated with the JX and JB resistant rootstocks were significantly (P < 0.05) lower than those associated with JJ susceptible rootstocks. In addition, the number of eggs were 73.3 ± 8.8% and 85.3 ± 7.7% less, respectively. The number of second-stage juveniles (J2s) in JX roots decreased by 57.1 ± 9.2% compared with that in JJ, and the giant cell and J2 development were poor in JX and JB roots. In pot experiments under a high plastic tunnel, plant height, stem diameter, leaf area, and yield of M. incognita-infected JX plants were not significantly different from those of noninoculated control. There was no significant difference in fruit weight, length, firmness, soluble solids, and color among the three grafted plants. The yield per JB plant was increased compared with that of JJ, irrespective of nematode presence. In the M. incognita-infested soil experiment in a high plastic tunnel, the yield per JX and JB plant were significantly higher than JJ (P < 0.05). Thus, the pumpkin rootstock Xiuli and Banzhen No. 3 are promising rootstocks for managing M. incognita without affecting cucumber fruit quality. Grafting provides a good basis for studying the defense mechanism of rootstocks against M. incognita.


Assuntos
Cucumis sativus , Cucurbita , Tylenchoidea , Animais , Frutas , Raízes de Plantas
17.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375181

RESUMO

Highly methylated apple pectin (HMAP) and pork gelatin (PGEL) have been proposed as gelling agents for pumpkin purée-based films. Therefore, this research aimed to develop and evaluate the physiochemical properties of composite vegetable films. Granulometric analysis of film-forming solutions showed a bimodal particle size distribution, with two peaks near 25 µm and close to 100 µm in the volume distribution. The diameter D4.3, which is very sensitive to the presence of large particles, was only about 80 µm. Taking into account the possibility of creating a polymer matrix from pumpkin purée, its chemical characteristic was determined. The content of water-soluble pectin was about 0.2 g/100 g fresh mass, starch at the level of 5.5 g/100 g fresh mass, and protein at the level of about 1.4 g/100 g fresh mass. Glucose, fructose, and sucrose, the content of which ranged from about 1 to 1.4 g/100 g fresh mass, were responsible for the plasticizing effect of the purée. All of the tested composite films, based on selected hydrocolloids with the addition of pumpkin purée, were characterized by good mechanical strength, and the obtained parameters ranged from about 7 to over 10 MPa. Differential scanning calorimetry (DSC) analysis determined that the gelatin melting point ranged from over 57 to about 67 °C, depending on the hydrocolloid concentration. The modulated differential scanning calorimetry (MDSC) analysis results exhibited remarkably low glass transition temperature (Tg) values, ranging from -34.6 to -46.5 °C. These materials are not in a glassy state at room temperature (~25 °C). It was shown that the character of the pure components affected the phenomenon of water diffusion in the tested films, depending on the humidity of the surrounding environment. Gelatin-based films were more sensitive to water vapor than pectin ones, resulting in higher water uptake over time. The nature of the changes in water content as a function of its activity indicates that composite gelatin films, with the addition of pumpkin purée, are characterized by a greater ability to adsorb moisture from the surrounding environment compared to pectin films. In addition, it was observed that the nature of the changes in water vapor adsorption in the case of protein films is different in the first hours of adsorption than in the case of pectin films, and changes significantly after 10 h of the film staying in an environment with relative humidity RH = 75.3%. The obtained results showed that pumpkin purée is a valuable plant material, which can form continuous films with the addition of gelling agents; however, practical application as edible sheets or wraps for food products needs to be preceded with additional research on its stability and interactions between films and food ingredients.


Assuntos
Cucurbita , Verduras , Animais , Gelatina , Vapor , Amido/química , Pectinas/química , Permeabilidade , Embalagem de Alimentos/métodos
18.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764349

RESUMO

For thousands of years, medicinal plants have played a pivotal role in maintaining human health and improving the quality of human life. This study was designed to analyze the analgesic, anti-inflammatory, and antibacterial potentials of a hydro-methanolic extract of Cucurbita moschata flowers, along with qualitative and quantitative phytochemical screening. The anti-inflammatory effect was tested using the in vitro membrane stabilizing method for human red blood cells (HRBC), the analgesic effect was tested using the in vivo acetic acid-induced writing method, and the antibacterial effect was tested using the disc diffusion method. In silico ADME/T and molecular docking studies were performed to assess the potential of the stated phytochemicals against Cyclooxygenase-II enzyme. Phytochemical screening confirmed the presence of flavonoids, alkaloids, glycosides, tannins, and carbohydrates. The flower extract demonstrated the maximum protection of human red blood cells at 1000 µg/mL, with a 65.73% reduction in hemolysis in a hypotonic solution. The extract also showed significant (p < 0.05) and dose-dependent analgesic effects at oral doses of 200 and 400 mg/kg on the tested animals. Furthermore, the flower extract exhibited potent antibacterial activity due to the disc diffusion method, which was compared with standard ciprofloxacin. In silico testing revealed that 42 phytochemicals exhibited notable pharmacokinetic properties and passed drug likeness screening tests. Among the six best-selected compounds, 3,4-dihydro-2H-pyran-2-yl)methanamine showed the highest binding affinity (-10.1) with significant non-bonding interactions with the target enzyme. In conclusion, the hydro-methanolic extract of Cucurbita moschata was found to be rich in various phytochemicals that may be associated with therapeutic potential, and this study supports the traditional use of Cucurbita moschata flowers in the management of inflammation and painful conditions.


Assuntos
Cucurbita , Animais , Humanos , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia , Flores , Extratos Vegetais/farmacologia
19.
Molecules ; 28(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049931

RESUMO

The peels from three pumpkin genotypes cultivated in Greece were assessed for their phenolic content and bioactive properties to obtain extracts with a high preservative capacity. The optimization of the extraction was performed through response surface methodology (RSM) based on a Box-Behnken experimental design after applying two extraction techniques: heat-assisted (HAE) and ultrasound-assisted (UAE) extraction. The implemented independent variables were time, solvent concentration, and temperature/power (for HAE/UAE), while as dependent variables the dry residue (DR), reducing power (RP), and total phenolic content (TP) were considered. In general, HAE was the most effective technique for 'TL' (75 min; 30 °C; 24% ethanol) and 'Voutirato' (15 min; 30 °C; 10% ethanol), while UAE was more effective for 'Leuka Melitis' (5 min; 400 W; 0% ethanol). The extracts obtained in the global optimum conditions for each genotype peel were then assessed for their phenolic profile, by HPLC-DAD-ESI/MS, and bioactive potential. Seven phenolic compounds were detected, including four flavonoids, two phenolic acids, and one flavan-3-ol. The extracts presented high antioxidant, antibacterial, and antifungal potential, with no cytotoxicity for non-tumor cells. The optimized conditions for the extraction of preservative compounds from bioresidues were defined, allowing the acquisition of antioxidant and antimicrobial extracts and proving their potential for food application.


Assuntos
Antioxidantes , Cucurbita , Antioxidantes/farmacologia , Temperatura Alta , Fenóis/química , Etanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
20.
J Sci Food Agric ; 103(2): 680-691, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36053837

RESUMO

BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.


Assuntos
Cucurbita , Cucurbita/química , Ácidos Graxos/química , Carotenoides/análise , Óleo de Girassol/análise , beta Caroteno/análise , Sementes/química , Óleos de Plantas/química , Aldeídos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA