Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140.277
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382538

RESUMO

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/etiologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Animais , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epigênese Genética
2.
Annu Rev Immunol ; 40: 45-74, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471840

RESUMO

The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Antígeno B7-H1 , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T , Microambiente Tumoral
3.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos
4.
Cell ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38885650

RESUMO

The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.

5.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653240

RESUMO

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Assuntos
Tecido Adiposo Marrom , Aminoácidos de Cadeia Ramificada , Resistência à Insulina , Mitocôndrias , Nitrogênio , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos , Nitrogênio/metabolismo , Mitocôndrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Insulina/metabolismo , Dieta Hiperlipídica , Adipócitos Marrons/metabolismo , Transdução de Sinais
6.
Cell ; 187(1): 17-43, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181740

RESUMO

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Assuntos
Microbiota , Fatores Sociais , Simbiose , Animais , Humanos , Doenças não Transmissíveis , Virulência
7.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
8.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36708705

RESUMO

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , RNA-Seq , Bactérias/genética , Análise de Célula Única
9.
Cell ; 186(23): 5098-5113.e19, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37918395

RESUMO

Drug-resistant Pseudomonas aeruginosa (PA) poses an emerging threat to human health with urgent need for alternative therapeutic approaches. Here, we deciphered the B cell and antibody response to the virulence-associated type III secretion system (T3SS) in a cohort of patients chronically infected with PA. Single-cell analytics revealed a diverse B cell receptor repertoire directed against the T3SS needle-tip protein PcrV, enabling the production of monoclonal antibodies (mAbs) abrogating T3SS-mediated cytotoxicity. Mechanistic studies involving cryoelectron microscopy identified a surface-exposed C-terminal PcrV epitope as the target of highly neutralizing mAbs with broad activity against drug-resistant PA isolates. These anti-PcrV mAbs were as effective as treatment with conventional antibiotics in vivo. Our study reveals that chronically infected patients represent a source of neutralizing antibodies, which can be exploited as therapeutics against PA.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Anticorpos Antibacterianos/farmacologia , Microscopia Crioeletrônica , Imunoglobulinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/tratamento farmacológico
10.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37611581

RESUMO

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Assuntos
Antibacterianos , Bactérias , Microbiologia do Solo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bioensaio , Difosfatos
11.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379838

RESUMO

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , Grânulos de Estresse , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos/metabolismo
12.
Cell ; 186(9): 1863-1876.e16, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37030292

RESUMO

Over the past few years, numerous anti-phage defense systems have been discovered in bacteria. Although the mechanism of defense for some of these systems is understood, a major unanswered question is how these systems sense phage infection. To systematically address this question, we isolated 177 phage mutants that escape 15 different defense systems. In many cases, these escaper phages were mutated in the gene sensed by the defense system, enabling us to map the phage determinants that confer sensitivity to bacterial immunity. Our data identify specificity determinants of diverse retron systems and reveal phage-encoded triggers for multiple abortive infection systems. We find general themes in phage sensing and demonstrate that mechanistically diverse systems have converged to sense either the core replication machinery of the phage, phage structural components, or host takeover mechanisms. Combining our data with previous findings, we formulate key principles on how bacterial immune systems sense phage invaders.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Mutação , Fenômenos Fisiológicos Bacterianos
13.
Annu Rev Biochem ; 91: 353-380, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35303791

RESUMO

Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.


Assuntos
Bactérias , Proteínas de Bactérias , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Filogenia
14.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649412

RESUMO

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Genes p16 , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia
15.
Cell ; 185(16): 2961-2974.e19, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35839760

RESUMO

Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Basidiomycota/metabolismo , Doenças das Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia , Virulência/genética
16.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198317

RESUMO

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Antivirais , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447074

RESUMO

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Recidiva Local de Neoplasia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
18.
Cell ; 184(23): 5740-5758.e17, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735796

RESUMO

Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.


Assuntos
Bactérias/genética , Biofilmes , DNA Bacteriano/química , Matriz Extracelular/metabolismo , Espaço Extracelular/química , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chinchila , DNA Cruciforme , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Acetato de Tetradecanoilforbol/farmacologia
19.
Cell ; 184(10): 2537-2564, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989548

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA