Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(3): 690-697, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597705

RESUMO

Predation risk effects are impacts on prey caused by predators that do not include consumption. These can include changes in prey behaviour, physiology, and morphology (i.e. risk-induced trait responses), which can have consequences to individual fitness and population dynamics (i.e. non-consumptive effects). While these risk-induced trait responses (RITRs) can lower individual fitness as compared to prey not exposed to risk, they are assumed to increase fitness in the presence of predators. While much work has been built upon this assumption, most evidence occurs in consumptive experiments where the trait values of consumed prey are unknown. We have little evidence showing individuals with a greater magnitude of RITR have greater survival. Here, we tested the hypothesis that RITRs increase survival in the presence of predators, but come at a cost to growth. We tested this hypothesis using Nucella lapillus as prey and Carcinus maenas as a predator and including mussels as a basal resource in a two-phase mesocosm experimental set-up. In phase 1, Nucella were placed into either a control or risk treatment (exposure to non-lethal Carcinus) for 28 days and their behaviour and growth measured. In phase 2, a lethal Carcinus was added to all mesocosms (non-lethal crabs were removed), and survival was recorded for 15 days. At the treatment (group) level, we found that Nucella exposed to predation risk in phase 1 had significantly greater risk aversion behaviour (summed score of risky vs. safe behaviour) and significantly lower growth. In phase 2, we found that Nucella exposed to predation risk had greater survival. At the individual level (regardless of treatment), we found that Nucella with greater risk aversion scores in phase 1 had significantly higher survival in phase 2 when exposed to a lethal predator, but this came at a cost to their growth. This study provides some of the first empirical evidence, at both the group and individual level, testing a long-held assumption that predation risk-induced behavioural responses increase survival in the face of direct predation, but that these responses come at a cost to the prey. These results add to our growing understanding of the benefits of RITRs to individual fitness and non-consumptive effects generally.


Assuntos
Braquiúros , Gastrópodes , Animais , Cadeia Alimentar , Comportamento Predatório/fisiologia , Gastrópodes/fisiologia , Braquiúros/fisiologia , Dinâmica Populacional
2.
J Anim Ecol ; 92(1): 142-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416593

RESUMO

Spatial responses to risk from multiple predators can precipitate emergent consequences for prey (i.e. multiple-predator effects, MPEs) and mediate indirect interactions between predators. How prey navigate risk from multiple predators may therefore have important ramifications for understanding the propagation of predation-risk effects (PREs) through ecosystems. The interaction of predator and prey traits has emerged as a potentially key driver of antipredator behaviour but remains underexplored in large vertebrate systems, particularly where sympatric prey share multiple predators. We sought to better generalize our understanding of how predators influence their ecosystems by considering how multiple sources of contingency drive prey distribution in a multi-predator-multi-prey system. Specifically, we explored how two sympatric ungulates with different escape tactics-vertically agile, scrambling ibex Capra sibirica and sprinting argali Ovis ammon-responded to predation risk from shared predators with contrasting hunting modes-cursorial wolves Canis lupus and vertical-ambushing, stalking snow leopards Panthera uncia. Contrasting risk posed by the two predators presented prey with clear trade-offs. Ibex selected for greater exposure to chronic long-term risk from snow leopards, and argali for wolves, in a nearly symmetrical manner that was predictable based on the compatibility of their respective traits. Yet, acute short-term risk from the same predator upended these long-term strategies, increasing each ungulates' exposure to risk from the alternate predator in a manner consistent with a scenario in which conflicting antipredator behaviours precipitate risk-enhancing MPEs and mediate predator facilitation. By contrast, reactive responses to wolves led ibex to reduce their exposure to risk from both predators-a risk-reducing MPE. Evidence of a similar reactive risk-reducing effect for argali vis-à-vis snow leopards was lacking. Our results suggest that prey spatial responses and any resulting MPEs and prey-mediated interactions between predators are contingent on the interplay of hunting mode and escape tactics. Further investigation of interactions among various drivers of contingency in PREs will contribute to a more comprehensive understanding and improved forecasting of the ecological effects of predators.


Assuntos
Panthera , Lobos , Animais , Ovinos , Ecossistema , Lobos/fisiologia , Comportamento Predatório/fisiologia , Cabras
3.
J Anim Ecol ; 92(5): 991-1000, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994669

RESUMO

Predators can affect parasite-host interactions when directly preying on hosts or their parasites. However, predators may also have non-consumptive indirect effects on parasite-host interactions when hosts adjust their behaviour or physiology in response to predator presence. In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host. Laboratory experiments revealed that chemical cues from crabs lead to a threefold increase in the release of trematode cercariae from periwinkles as a result of increased periwinkle activity. This positive effect on transmission was contrasted by a 10-fold reduction in cercarial infection rates in the second intermediate host when we experimentally exposed mussels to cercariae and predator cues. The low infection rates were caused by a substantial reduction in mussel filtration activity in the presence of predator cues, preventing cercariae from entering the mussels. To assess the combined net effect of both processes, we conducted a transmission experiment between infected periwinkles and uninfected mussels. Infection levels of mussels in the treatments with crab cues were sevenfold lower than in mussels without crab chemical cues. This suggests that predation risk effects on mussel susceptibility can counteract the elevated parasite release from first intermediate hosts, with negative net effects on parasite transmission. These experiments highlight that predation risk effects on parasite transmission can have opposing directions at different stages of the parasite's life cycle. Such complex non-consumptive predation risk effects on parasite transmission may constitute an important indirect mechanism affecting prevalence and distribution patterns of parasites in different hosts across their life cycle.


Assuntos
Braquiúros , Parasitos , Trematódeos , Animais , Comportamento Predatório/fisiologia , Interações Hospedeiro-Parasita , Trematódeos/fisiologia
4.
Proc Natl Acad Sci U S A ; 117(12): 6590-6598, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152110

RESUMO

The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked prey, bowhead whales (Balaena mysticetus; n = 7), and predator, killer whales (Orcinus orca; n = 3), in a large (63,000 km2), partially ice-covered gulf in the Canadian Arctic. Our analysis revealed pronounced predator-mediated shifts in prey habitat use and behavior over much larger spatiotemporal scales than previously documented in any marine or terrestrial ecosystem. The striking shift from use of open water (predator-free) to dense sea ice and shorelines (predators present) was exhibited gulf-wide by all tracked bowheads during the entire 3-wk period killer whales were present, constituting a nonconsumptive effect (NCE) with unknown energetic or fitness costs. Sea ice is considered quintessential habitat for bowhead whales, and ice-covered areas have frequently been interpreted as preferred bowhead foraging habitat in analyses that have not assessed predator effects. Given the NCEs of apex predators demonstrated here, however, unbiased assessment of habitat use and distribution of bowhead whales and many marine species may not be possible without explicitly incorporating spatiotemporal distribution of predation risk. The apparent use of sea ice as a predator refuge also has implications for how bowhead whales, and likely other ice-associated Arctic marine mammals, will cope with changes in Arctic sea ice dynamics as historically ice-covered areas become increasingly ice-free during summer.


Assuntos
Baleia Franca/fisiologia , Ecossistema , Camada de Gelo , Orca/fisiologia , Animais , Regiões Árticas , Canadá , Biologia Marinha , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório
5.
Ecol Lett ; 24(1): 113-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990363

RESUMO

Non-consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator-induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti-predator behaviours, we conceptualise the multi-stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey-specific patterns of evasion success ('evasion landscapes') as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non-consumptive predator-prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context-dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Previsões
6.
Proc Biol Sci ; 288(1945): 20202966, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622122

RESUMO

Research on the 'ecology of fear' posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator-prey and host-parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.


Assuntos
Parasitos , Comportamento Predatório , Animais , Medo , Cadeia Alimentar , Humanos , Dinâmica Populacional
7.
J Anim Ecol ; 90(9): 2041-2052, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33624313

RESUMO

Extreme climatic events (ECEs) and predator removal represent some of the most widespread stressors to ecosystems. Though species interactions can alter ecological effects of climate change (and vice versa), it is less understood whether, when and how predator removal can interact with ECEs to exacerbate their effects. Understanding the circumstances under which such interactions might occur is critical because predator loss is widespread and ECEs can generate rapid phase shifts in ecosystems which can ultimately lead to tropicalization. Our goal was to determine whether loss of predation risk may be an important mechanism governing ecosystem responses to extreme events, and whether the effects of such events, such as tropicalization, can occur even when species range shifts do not. Specifically, our goal was to experimentally simulate the loss of an apex predator, the tiger shark Galeocerdo cuvier effects on a recently damaged seagrass ecosystem of Shark Bay, Australia by applying documented changes to risk-sensitive grazing of dugong Dugong dugon herbivores. Using a 16-month-field experiment established in recently disturbed seagrass meadows, we used previous estimates of risk-sensitive dugong foraging behaviour to simulate altered risk-sensitive foraging densities and strategies of dugongs consistent with apex predator loss, and tracked seagrass responses to the simulated grazing. Grazing treatments targeted and removed tropical seagrasses, which declined. However, like in other mixed-bed habitats where dugongs forage, treatments also incidentally accelerated temperate seagrass losses, revealing that herbivore behavioural changes in response to predator loss can exacerbate ECE and promote tropicalization, even without range expansions or introductions of novel species. Our results suggest that changes to herbivore behaviours triggered by loss of predation risk can undermine ecological resilience to ECEs, particularly where long-lived herbivores are abundant. By implication, ongoing losses of apex predators may combine with increasingly frequent ECEs to amplify climate change impacts across diverse ecosystems and large spatial scales.


Assuntos
Dugong , Tubarões , Animais , Mudança Climática , Ecossistema , Comportamento Predatório
8.
Ecol Lett ; 23(11): 1693-1714, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902103

RESUMO

Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.


Assuntos
Produtos Biológicos , Cadeia Alimentar , Animais , Evolução Biológica , Ecossistema , Controle Biológico de Vetores , Comportamento Predatório
9.
Biol Lett ; 15(10): 20190409, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31573428

RESUMO

Non-consumptive fear effects are an important determinant of foraging decisions by consumers across a range of ecosystems. However, how fear effects associated with the presence of predators interact with those associated with habitat structure remain unclear. Here, we used predator fish models (Plectropomus leopardus) and experimental patches of the macroalga Sargassum ilicifolium of varying densities to investigate how predator- and habitat-associated fear effects influence herbivory on coral reefs. We found the removal of macroalgal biomass (i.e. herbivory) was shaped by the interaction between predator- and habitat-associated fear effects. Rates of macroalgal removal declined with increasing macroalgal density, likely due to increased visual occlusion by denser macroalgae patches and reduced ability of herbivorous fishes to detect the predators. The presence of the predator model reduced herbivory within low macroalgal density plots, but not within medium- and high-density macroalgal plots. Our results suggest that fear effects due to predator presence were greatest at low macroalgal density, yet these effects were lost at higher densities possibly due to greater predation risk associated with habitat structure and/or the inability of herbivorous fishes to detect the predator model.


Assuntos
Recifes de Corais , Herbivoria , Animais , Ecossistema , Medo , Peixes , Comportamento Predatório
10.
Oecologia ; 190(2): 375-385, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31155681

RESUMO

Emerging conservation efforts for the world's large predators may, if successful, restore natural predator-prey interactions. Marine reserves, where large predators tend to be relatively common, offer an experimental manipulation to investigate interactions between large-bodied marine predators and their prey. We hypothesized that southern stingrays-large, long-lived and highly interactive mesopredators-would invest in anti-predator behavior in marine reserves where predatory large sharks, the primary predator of stingrays, are more abundant. Specifically, we predicted southern stingrays in marine reserves would reduce the use of deep forereef habitats in the favor of shallow flats where the risk of shark encounters is lower. Baited remote underwater video was used to survey stingrays and reef sharks in flats and forereef habitats of two reserves and two fished sites in Belize. The interaction between "protection status" and "habitat" was the most important factor determining stingray presence. As predicted, southern stingrays spent more time interacting with baited remote underwater videos in the safer flats habitats, were more likely to have predator-inflicted damage inside reserves, and were less abundant in marine reserves but only in the forereef habitat. These results are consistent with a predation-sensitive habitat shift rather than southern stingray populations being reduced by direct predation from reef sharks. Our study provides evidence that roving predators can induce pronounced habitat shifts in prey that rely on crypsis and refuging, rather than active escape, in high-visibility, heterogeneous marine habitats. Given documented impacts of stingrays on benthic communities it is possible restoration of reef shark populations with reserves could induce reef ecosystem changes through behavior-mediated trophic cascades.


Assuntos
Ecossistema , Tubarões , Animais , Belize , Comportamento Predatório
11.
J Anim Ecol ; 86(4): 749-765, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390066

RESUMO

Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple competing hypotheses. Addressing the pressing questions in risk effects research, including how, to what extent and on what scale they occur, requires leveraging the advantages of the many methods available to characterize risk while minimizing the confusion caused by variability in their application.


Assuntos
Modelos Teóricos , Comportamento Predatório , Risco , Animais , Carnívoros , Ecossistema , Medo , Ruminantes
12.
Ecology ; 97(12): 3530-3537, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912006

RESUMO

Apex predators can suppress the foraging activity of mesopredators, which may then result in cascading benefits for the prey of those mesopredators. We studied the interactions between a top predator, the Barn Owl (Tyto alba), and their primary prey, an island endemic deer mouse (Peromyscus maniculatus elusus), which in turn consumes the eggs of seabirds nesting on Santa Barbara Island in California. Scripps's Murrelets (Synthliboramphus scrippsi), a threatened nocturnal seabird, arrive annually to breed on this island, and whose first egg is particularly vulnerable to predation by mice. We took advantage of naturally occurring extreme variations in the density of mice and owls on the island over 3 years and predicted that (1) mouse foraging would decrease with increasing predation risk from owls and moonlight and (2) these decreases in foraging would reduce predation on murrelet eggs. We measured the giving up densities of mice with experimental foraging stations and found that mice were sensitive to predation risk and foraged less when owls were more abundant and less during the full moon compared to the new moon. We also monitored the fates of 151 murrelet eggs, and found that murrelet egg predation declined as owl abundance increased, and was lower during the full moon compared to the new moon. Moreover, high owl abundance suppressed egg predation even when mice were extremely abundant. We conclude that there is a behaviorally mediated cascade such that owls on the island had a positive indirect effect on murrelet egg survival. Our study adds to the wider recognition of the strength of risk effects to structure food webs, as well as highlighting the complex ways that marine and terrestrial food webs can intersect.


Assuntos
Anseriformes/fisiologia , Óvulo/fisiologia , Peromyscus/fisiologia , Comportamento Predatório/fisiologia , Estrigiformes/fisiologia , Animais , Ilhas , Comportamento de Nidação , Dinâmica Populacional , Fatores de Risco
13.
Glob Chang Biol ; 22(1): 44-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26448058

RESUMO

In ocean ecosystems, many of the changes in predation risk - both increases and decreases - are human-induced. These changes are occurring at scales ranging from global to local and across variable temporal scales. Indirect, risk-based effects of human activity are known to be important in structuring some terrestrial ecosystems, but these impacts have largely been neglected in oceans. Here, we synthesize existing literature and data to explore multiple lines of evidence that collectively suggest diverse human activities are changing marine ecosystems, including carbon storage capacity, in myriad ways by altering predation risk. We provide novel, compelling evidence that at least one key human activity, overfishing, can lead to distinct, cascading risk effects in natural ecosystems whose magnitude exceeds that of presumed lethal effects and may account for previously unexplained findings. We further discuss the conservation implications of human-caused indirect risk effects. Finally, we provide a predictive framework for when human alterations of risk in oceans should lead to cascading effects and outline a prospectus for future research. Given the speed and extent with which human activities are altering marine risk landscapes, it is crucial that conservation and management policy considers the indirect effects of these activities in order to increase the likelihood of success and avoid unfortunate surprises.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Carbono , Conservação dos Recursos Naturais , Pesqueiros , Atividades Humanas , Humanos , Biologia Marinha , Oceanos e Mares , Medição de Risco
14.
J Anim Ecol ; 85(1): 146-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26332988

RESUMO

Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size structure of herbivores towards smaller individuals, increases individual feeding rates, but suppresses overall amounts of primary producers consumed, potentially altering patterns of herbivory, an ecosystem process critical for healthy coral reefs.


Assuntos
Recifes de Corais , Peixes/fisiologia , Cadeia Alimentar , Herbivoria , Comportamento Predatório , Animais , Bass/fisiologia , Medo , Florida
15.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25608884

RESUMO

The fear induced by predators on their prey is well known to cause behavioural adjustments by prey that can ripple through food webs. Little is known, however, about the analogous impacts of humans as perceived top predators on the foraging behaviour of carnivores. Here, we investigate the influence of human-induced fear on puma foraging behaviour using location and prey consumption data from 30 tagged individuals living along a gradient of human development. We observed strong behavioural responses by female pumas to human development, whereby their fidelity to kill sites and overall consumption time of prey declined with increasing housing density by 36 and 42%, respectively. Females responded to this decline in prey consumption time by increasing the number of deer they killed in high housing density areas by 36% over what they killed in areas with little residential development. The loss of food from declines in prey consumption time paired with increases in energetic costs associated with killing more prey may have consequences for puma populations, particularly with regard to reproductive success. In addition, greater carcass availability is likely to alter community dynamics by augmenting food resources for scavengers. In light of the extensive and growing impact of habitat modification, our study emphasizes that knowledge of the indirect effects of human activity on animal behaviour is a necessary component in understanding anthropogenic impacts on community dynamics and food web function.


Assuntos
Medo , Comportamento Alimentar , Comportamento Predatório , Puma/fisiologia , Animais , California , Cervos , Ecossistema , Feminino , Humanos , Masculino , Fatores Sexuais
16.
Proc Biol Sci ; 281(1785): 20140446, 2014 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-24789903

RESUMO

Predators influence prey populations not only through predation itself, but also indirectly through prompting changes in prey behaviour. The behavioural adjustments of prey to predation risk may carry nutritional costs, but this has seldom been studied in the wild in large mammals. Here, we studied the effects of an ambush predator, the African lion (Panthera leo), on the diet quality of plains zebras (Equus quagga) in Hwange National Park, Zimbabwe. We combined information on movements of both prey and predators, using GPS data, and measurements of faecal crude protein, an index of diet quality in the prey. Zebras which had been in close proximity to lions had a lower quality diet, showing that adjustments in behaviour when lions are within short distance carry nutritional costs. The ultimate fitness cost will depend on the frequency of predator-prey encounters and on whether bottom-up or top-down forces are more important in the prey population. Our finding is the first attempt to our knowledge to assess nutritionally mediated risk effects in a large mammalian prey species under the threat of an ambush predator, and brings support to the hypothesis that the behavioural effects of predation induce important risk effects on prey populations.


Assuntos
Dieta , Equidae/fisiologia , Leões/fisiologia , Comportamento Predatório , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Alimentar , Feminino , Masculino , Zimbábue
17.
J Hazard Mater ; 465: 133387, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198872

RESUMO

Respirable fine-grained fly ash (RFA) is captured very inefficiently by existing air purification devices of power plant, leading to increasing concerns regarding their migration and subsequent interaction with body due to fine particle size and its complex toxic composition. Trace elements of RFA in three groups with five different sizes between 8-13 µm were analyzed in terms of available concentration, speciation and risk effects. The concentration, pollution level and ecological risk level of elements in RFA were related to particle sizes. Chronic non-carcinogenic effect risk (NER) and carcinogenic effect risk (CER) were negatively correlated with particle size. The individual weight of exposed subjects, corresponding trace elements concentration and ingestion rate in RFA were three significant variables influencing CER. NER and CER had a tenfold exaggerated effect when calculated using total element concentration of RFA. In addition to individual differences and exposure conditions, trace element properties, speciation and available concentration were the dominant factor responsible for ecological and environmental effects of trace elements in RFA, following the order As>Ni, Mn>Cr>Pb>Cu>Zn. Results of this work highlight the effects and differences of trace elements in RFA on ecology and health, and provide a basis for further pollution control and human health warning.


Assuntos
Metais Pesados , Oligoelementos , Humanos , Cinza de Carvão/análise , Oligoelementos/análise , Poluição Ambiental , Tamanho da Partícula , Centrais Elétricas , Medição de Risco , Monitoramento Ambiental/métodos , Metais Pesados/análise
18.
J Trace Elem Med Biol ; 83: 127373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176317

RESUMO

BACKGROUND: The increasing consumption of seafood may bring health risks. It will be especially important for the people living along the coasts who are highly dependent on seafood for food and income. METHODS: In this research, a comprehensive health risk assessment was performed on 27 species of high-consumption commercial fish sampled from stations located in Hormozgan province within the Northeast Persian Gulf. Concentrations of trace metals and their health risk were investigated. RESULTS: Spatial distribution of trace metals in commercial fish showed central stations including Kong and Greater Tonb have higher concentrations of all trace metals except Pb. Some metals showed a significant correlation between concentrations. Our finding indicated the average concentration of all trace metals except Ni in all species was below the concentrations proposed by WHO/FAO/USEPA. EDI for all metals in all species in both adult and child age groups was lower than its RfD (oral reference dose of trace metal) showing the daily consumption of these fish does not pose any health risk and implicates seafood consumption guidelines or policies. Values of THQ for each metal and HI for all metals were lower than 1 in all commercial fish indicating the lack of non-cancerous health risk through the long-term consumption of these fish. The research found potential health risks associated with the consumption of these fish, specifically related to the metals Cr, Ni, and Cd. CONCLUSION: In total, health risk indices proposed eight fish as bio-indicator species of the Persian Gulf. The findings emphasize the risk management of commercial fish consumption, especially bio-indicator species, in Hormozgan province, the Northeast Persian Gulf.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Adulto , Criança , Humanos , Oceano Índico , Metais , Peixes , Medição de Risco , Alimentos Marinhos/análise , Metais Pesados/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Contaminação de Alimentos
19.
Ecol Evol ; 14(4): e11257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654717

RESUMO

Human activity is omnipresent in our landscapes. Animals can perceive risk from humans similar to predation risk, which could affect their fitness. We assessed the influence of the relative intensity of recreational activities on the bodyweight and pregnancy rates of red deer (Cervus elaphus) between 1985 and 2015. We hypothesized that stress, as a result of recreational activities, affects the pregnancy rates of red deer directly and indirectly via a reduction in bodyweight. Furthermore, we expected non-motorized recreational activities to have a larger negative effect on both bodyweight and fecundity, compared to motorized recreational activities. The intensity of recreational activities was recorded through visual observations. We obtained pregnancy data from female red deer that were shot during the regular hunting season. Additionally, age and bodyweight were determined through a post-mortem examination. We used two Generalized-Linear-Mixed Models (GLMM) to test the effect of different types of recreation on (1) pregnancy rates and (2) bodyweight of red deer. Recreation had a direct negative correlation with the fecundity of red deer, with bodyweight, as a mediator as expected. Besides, we found a negative effect of non-motorized recreation on fecundity and bodyweight and no significant effect of motorized recreation. Our results support the concept of humans as an important stressor affecting wild animal populations at a population level and plead to regulate recreational activities in protected areas that are sensitive. The fear humans induce in large-bodied herbivores and its consequences for fitness may have strong implications for animal populations.

20.
J Anim Ecol ; 82(4): 836-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23461483

RESUMO

Spatiotemporal segregation is often explained by the risk for offspring predation or by differences in physiology, predation risk vulnerability or competitive abilities related to size dimorphism. Most large carnivores are size dimorphic and offspring predation is often intraspecific and related to nonparental infanticide (NPI). NPI can be a foraging strategy, a strategy to reduce competition, or a male reproductive strategy. Spatiotemporal segregation is widespread among large carnivores, but its nature remains poorly understood. We evaluated three hypotheses to explain spatiotemporal segregation in the brown bear, a size-dimorphic large carnivore in which NPI is common; the 'NPI - foraging/competition hypothesis', i.e. NPI as a foraging strategy or a strategy to reduce competition, the 'NPI - sexual selection hypothesis', i.e. infanticide as a male reproductive strategy and the 'body size hypothesis', i.e. body-size-related differences in physiology, predation risk vulnerability or competitive ability causes spatiotemporal segregation. To test these hypotheses, we quantified spatiotemporal segregation among adult males, lone adult females and females with cubs-of-the-year, based on GPS-relocation data (2006-2010) and resource selection functions in a Scandinavian population. We found that spatiotemporal segregation was strongest between females with cubs-of-the-year and adult males during the mating season. During the mating season, females with cubs-of-the-year selected their resources, in contrast to adult males, in less rugged landscapes in relative close proximity to certain human-related variables, and in more open habitat types. After the mating season, females with cubs-of-the-year markedly shifted their resource selection towards a pattern more similar to that of their conspecifics. No strong spatiotemporal segregation was apparent between females with cubs-of-the-year and conspecifics during the mating and the postmating season. The 'NPI - sexual selection hypothesis' best explained spatiotemporal segregation in our study system. We suggest that females with cubs-of-the-year alter their resource selection to avoid infanticidal males. In species exhibiting NPI as a male reproductive strategy, female avoidance of infanticidal males is probably more common than observed or reported, and may come with a fitness cost if females trade safety for optimal resources.


Assuntos
Comportamento Sexual Animal/fisiologia , Ursidae/fisiologia , Animais , Demografia , Feminino , Masculino , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA