Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 244(4): 1450-1466, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39262232

RESUMO

Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Salvia miltiorrhiza , Transdução de Sinais , Abietanos/biossíntese , Acetatos/farmacologia , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polifenóis , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/fisiologia , Transdução de Sinais/efeitos dos fármacos
2.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542838

RESUMO

As one of the traditional Chinese herbs, Danshen (Salvia miltiorrhiza Bunge) has been widely studied and widely used in the treatment of cardiovascular, cerebrovascular, and other immune diseases. Tanshinones and salvianolic acids isolated from Danshen are considered to be the main components of its biological activity and pharmacology that play important roles in increasing the index of immune organs, regulating the number and function of immune cells, and releasing immunoreactive substances. Especially tanshinone IIA, cryptotanshinone, salvianolic acid B, and rosmarinic acid show good biological activity in treating rheumatoid arthritis, some immune-mediated inflammatory diseases, psoriasis, and inflammatory bowel disease. In order to understand their pharmacological effects and provide references for future research and clinical treatment, the regulation of immune response by tanshinones and salvianolic acids is summarized in detail in this paper. In addition, the challenges in their pharmacological development and the opportunities to exploit their clinical potential have been documented.


Assuntos
Alcenos , Antineoplásicos , Polifenóis , Salvia miltiorrhiza , Abietanos/farmacologia , Imunidade
3.
Plant Foods Hum Nutr ; 79(2): 526-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530542

RESUMO

The antiglycation mechanisms of three structurally different salvianolic acids (Sals) including salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and salvianolic acid C (Sal-C) were investigated using the bovine serum albumin (BSA)-fructose model. The results showed that the three compounds could inhibit the formation of glycation products, maintain protein structural stability, mitigate the development of amyloid fibrils and scavenge radicals. Notably, Sal-A possessed the highest anti-glycated activity compared with Sal-B and Sal-C. This may be related to the fact that Sal-A contained the most molecules of caffeic acid (Sal-A, Sal-B, and Sal-C possessing two, one, and zero caffeic acid units, respectively), and caffeic acid played a leading role in the antiglycation properties relative to Danshensu. Moreover, these compounds quenched the intrinsic fluorescence intensity of BSA in a static mode, with the binding constants in the order of Sal-A > Sal-B > Sal-C. Obviously, Sal-A possessed the strongest binding affinity among these compounds, which may be one of the reasons why it exhibited the optimal antiglycation capability. Furthermore, molecular docking demonstrated that the three Sals exerted protective effects on BSA by preventing glycation modification of lysine and arginine residues. These findings would provide valuable insights into the potential application of Sals for alleviating non-enzymatic glycation of protein.


Assuntos
Benzofuranos , Ácidos Cafeicos , Lactatos , Polifenóis , Soroalbumina Bovina , Soroalbumina Bovina/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Glicosilação/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Benzofuranos/farmacologia , Benzofuranos/química , Lactatos/farmacologia , Lactatos/química , Alcenos/farmacologia , Alcenos/química , Animais , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Bovinos , Simulação de Acoplamento Molecular , Depsídeos
4.
Plant Cell Rep ; 42(2): 297-308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36459184

RESUMO

KEY MESSAGE: Overexpression and antisense expression of Sm4CL2 re-directed the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a widely used traditional Chinese medicine and its main active ingredients are water-soluble phenolic acids and lipophilic diterpenoids which are produced through the phenylpropanoid pathway and terpenoid pathway, respectively. 4-Coumaric acid: Coenzyme A ligase (4CL) is a key enzyme in the phenylpropanoid metabolism. We had obtained Sm4CL2-overexpressing (Sm4CL2-OE) and antisense Sm4CL2-expressing (anti-Sm4CL2) danshen hairy roots over ten years ago. In the follow-up study, we found that total salvianolic acids in Sm4CL2-OE-4 hairy roots increased to 1.35 times of the control-3, and that in anti-Sm4CL2-1 hairy roots decreased to 37.32% of the control-3, but tanshinones in anti-Sm4CL2-1 was accumulated to 1.77 ± 0.16 mg/g of dry weight, compared to undetectable in Sm4CL2-OE-4 and the control-3 hairy roots. Interestingly, Sm4CL2-OE-4 hairy roots contained more lignin, 1.36 times of the control-3, and enhanced cell wall and xylem lignification. Transcriptomic analysis revealed that overexpression of Sm4CL2 caused the upregulation of other phenylpropanoid pathway genes and antisense Sm4CL2 expression resulted in the downregulation of other phenylpropanoid pathway genes but activated the expression of terpenoid pathway genes like SmCYP76AK5, SmGPPS.SSUII.1 and SmDXS2. Protein-protein interaction analysis suggested that Sm4CL2 might interact with PAL, PAL4, CSE, CCoAOMT and SmCYP84A60, and appeared to play a key role in the interaction network. The tracking work in this study proved that Sm4CL2 could redirect both salvianolic acids and tanshinones biosynthesis possibly through synergistically regulating other pathway genes. It also indicated that genetic modification of plant secondary metabolism with biosynthetic gene might cause other responses through protein-protein interactions.


Assuntos
Diterpenos , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Seguimentos , Abietanos/metabolismo , Diterpenos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Integr Neurosci ; 22(3): 60, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37258428

RESUMO

BACKGROUND: Salvianolic acids possess anti-inflammatory properties. This study investigated the therapeutic effect of salvianolic acids on chronic mild stress (CMS)-induced depressive-like behaviors in rats and the involvement of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). METHODS: Eighty male Sprague-Dawley rats were randomly subjected to CMS or non-CMS protocol for 6 weeks. Starting 3 weeks after CMS exposure, the rats in each group were administered saline, fluoxetine (positive control), salvianolic acids, or salvianolic acids + fluoxetine daily for 3 weeks. The body weight change, sucrose preference, and immobility duration in forced swimming were examined before and after drug treatment. The rats were sacrificed at 3 weeks after drug treatment. Quantitative real-time PCR was performed to measure the mRNA levels of TLR4 and MyD88 in the prefrontal cortex and hippocampus of rats. RESULTS: Compared with non-CMS rats, CMS rats had significantly reduced weight gains and sucrose preference, along with significantly increased immobility durations and elevated mRNA levels of TLR4 and MyD88 in both the prefrontal cortex and hippocampus. Treatment with fluoxetine and salvianolic acids, alone or in combination, facilitated weight gains, alleviated depressive-like behaviors, and reduced cerebral TLR4/MyD88 mRNA levels in CMS rats. Besides, fluoxetine and salvianolic acids additively suppressed TLR4/MyD88 mRNA expression in the prefrontal cortex of rats. Furthermore, TLR4 mRNA levels in both hippocampus and prefrontal cortex positively correlated with MyD88 mRNA expression, inflammatory cytokine secretion, and immobility duration but negatively correlated with sucrose preference. CONCLUSIONS: Thus, salvianolic acids alleviate depressive-like behaviors, possibly by suppressing TLR4/MyD88-mediated inflammatory signaling in the brain.


Assuntos
Fluoxetina , Receptor 4 Toll-Like , Ratos , Masculino , Animais , Fluoxetina/farmacologia , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Hipocampo/metabolismo , Aumento de Peso , RNA Mensageiro/metabolismo , Sacarose/farmacologia , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
6.
Biomed Chromatogr ; 36(11): e5463, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35895507

RESUMO

Salvianolic acids for injection (SAI) is developed from traditional Chinese medicine and approved for the treatment of cardiovascular and cerebrovascular diseases. Clopidogrel is an inhibitor of platelet aggregation, which is often prescribed for patients in combination with SAI. This present study aimed to assess the effects of SAI on the pharmacogenomics, pharmacokinetics, and pharmacodynamics of clopidogrel, thereby ensuring the safety and efficacy of coadministration. In vitro cytochrome P450 isoenzyme assays were performed in human liver microsomes using LC-MS/MS method to assess the metabolites of CYPs substrates. The effects of SAI on the pharmacokinetic and pharmacodynamic behaviors of clopidogrel were investigated in rats. The main pharmacokinetic parameters were analyzed using LC-MS/MS. Prothrombin time, activated partial thromboplastin time, bleeding time, and inhibition of platelet aggregation were measured to evaluate the effects of pharmacodynamics. Our study revealed that the clinical dose of SAI has no significant inhibitory effect on clopidogrel-related liver microsome metabolic CYP450 isoenzymes. Moreover, SAI did not affect the pharmacokinetics of clopidogrel when rats were administered both single and multiple doses. In pharmacodynamic study, SAI has no effect on platelet aggregation rate, prothrombin time, and activated partial thromboplastin time of clopidogrel but could significantly prevent the risk of bleeding caused by clopidogrel.


Assuntos
Isoenzimas , Inibidores da Agregação Plaquetária , Alcenos , Animais , Cromatografia Líquida , Clopidogrel/farmacologia , Sistema Enzimático do Citocromo P-450 , Humanos , Inibidores da Agregação Plaquetária/farmacocinética , Polifenóis , Ratos , Espectrometria de Massas em Tandem
7.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5131-5139, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472020

RESUMO

Modernization of Chinese medicine is an important development direction of traditional Chinese medical sciences. It is of great significance to understand the mechanism of Chinese medicine with basic research, which can also accelerate the development and utilization of Chinese medicine. Salviae Miltiorrhizae Radix et Rhizoma is one of the most commonly used Chinese medicines in China for the prevention and treatment of cardiovascular and cerebrovascular diseases. It has received key and extensive attention worldwide in the following aspects: main active ingredients and their pharmacological mechanism, function and regulation of their biosynthetic pathway and application of their synthetic biology as well as the clinical preparations. The new and developing chemical analysis, network pharmacology, molecular pharmacognosy and omics make the modernization research of Salviae Miltiorrhizae Radix et Rhizoma comprehensive and in-depth. This study systematically reviewed the modernization research of Salviae Miltiorrhizae Radix et Rhizoma, which focused on its pharmacological effects, preparation research, biosynthesis and regulation mechanism of the active ingredients, and expected to exert the model role of Salviae Miltiorrhizae Radix et Rhizoma in the research of Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Medicina Tradicional Chinesa , Salvia miltiorrhiza/química , Medicamentos de Ervas Chinesas/química , Rizoma/química , Raízes de Plantas
8.
Plant J ; 104(3): 781-799, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772407

RESUMO

Salvianolic acids (SalAs), a group of secondary metabolites in Salvia miltiorrhiza, are widely used for treating cerebrovascular diseases. Their biosynthesis is modulated by a variety of abiotic factors, including ultraviolet-B (UV-B) irradiation; however, the underlying mechanisms remain largely unknown. Here, an integrated metabolomic, proteomic, and transcriptomic approach coupled with transgenic analyses was employed to dissect the mechanisms underlying UV-B irradiation-induced SalA biosynthesis. Results of metabolomics showed that 28 metabolites, including 12 SalAs, were elevated in leaves of UV-B-treated S. miltiorrhiza. Meanwhile, the contents of several phytohormones, including jasmonic acid and salicylic acid, which positively modulate the biosynthesis of SalAs, also increased in UV-B-treated S. miltiorrhiza. Consistently, 20 core biosynthetic enzymes and numerous transcription factors that are involved in SalA biosynthesis were elevated in treated samples as indicated by a comprehensive proteomic analysis. Correlation and gene expression analyses demonstrated that the NAC1 gene, encoding a NAC transcriptional factor, was positively involved in UV-B-induced SalA biosynthesis. Accordingly, overexpression and RNA interference of NAC1 increased and decreased SalA contents, respectively, through regulation of key biosynthetic enzymes. Furthermore, ChIP-qPCR and Dual-LUC assays showed that NAC1 could directly bind to the CATGTG and CATGTC motifs present in the promoters of the SalA biosynthesis-related genes PAL3 and TAT3, respectively, and activate their expression. Our results collectively demonstrate that NAC1 plays a crucial role in UV-B irradiation-induced SalA biosynthesis. Taken together, our findings provide mechanistic insights into the UV-B-induced SalA biosynthesis in S. miltiorrhiza, and shed light on a great potential for the development of SalA-abundant varieties through genetic engineering.


Assuntos
Proteínas de Plantas/genética , Polifenóis/biossíntese , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/efeitos da radiação , Alcenos , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polifenóis/genética , Proteômica/métodos , Interferência de RNA , Salvia miltiorrhiza/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Regulação para Cima
9.
Planta ; 253(5): 87, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33811528

RESUMO

MAIN CONCLUSION: The proteins related to the biosynthesis of salvianolic acids and lignins were regulated by smoke-water and karrikinolide in Salvia miltiorrhiza hairy roots. The effects of smoke-water (SW) and karrikinolide (KAR1) on the biosynthesis of salvianolic acids and lignins in Salvia miltiorrhiza hairy roots have been studied using proteomic technology. The results showed that a total of 1290 and 1678 differentially expressed proteins were respectively obtained in SW and KAR1 comparing to the control. Bioinformatics analysis indicated the differentially expressed proteins responding to SW and KAR1 treatments mainly involved in macromolecule metabolic process, cell part, binding, etc., and most of the proteins were located at the cytoplasm and cell membrane, followed by nuclear. In addition, the proteins involved in salvianolic acids biosynthesis were up-regulated, including 4-coumarate-CoA ligase (EC 6.2.1.12) and shikimate O-hydroxycinnamoyl-transferase (EC 2.3.1.133). Enzymes involved in lignins biosynthesis were also identified, e.g. cinnamyl-alcohol dehydrogenase (EC 1.1.1.195) and peroxidase (EC 1.11.1.7). The results indicated that proteins related to the biosynthesis of salvianolic acids and lignins were regulated by SW and KAR1 in S. miltiorrhiza hairy roots. This study will enhance our understanding of the mechanism by which SW and KAR1 on the biosynthesis of salvianolic acids and lignins in S. miltiorrhiza hairy roots.


Assuntos
Salvia miltiorrhiza , Furanos , Lignina , Raízes de Plantas/genética , Proteômica , Piranos , Fumaça , Água
10.
Plant Cell Rep ; 39(10): 1263-1283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32607753

RESUMO

KEY MESSAGE: MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.


Assuntos
MicroRNAs/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Salvia miltiorrhiza/citologia , Salvia miltiorrhiza/genética , Abietanos/metabolismo , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Alcenos/metabolismo , Antocianinas/metabolismo , Sítios de Ligação , Biomassa , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclopentanos/farmacologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Giberelinas/farmacologia , MicroRNAs/genética , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Polifenóis/metabolismo , Propanóis/metabolismo , Estabilidade de RNA/genética , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Salvia miltiorrhiza/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética
11.
Zhongguo Zhong Yao Za Zhi ; 45(14): 3251-3258, 2020 Jul.
Artigo em Zh | MEDLINE | ID: mdl-32726037

RESUMO

This paper aimed to establish efficacy systems of tanshinones and salvianolic acids, two representative substances in Salviae Miltiorrhizae Radix et Rhizoma by using literature mining and biological network construction, based on systematic traditional Chinese medicine theory. The systematic study on the efficacy of traditional Chinese medicine was carried out from the basic unit, the structure and relationship between the basic units, the boundary of the research object and the function of the system, so as to explain the overall efficacy of the two kinds of components at the molecular level. Firstly, we collected the elements of the efficacy systems of these two kinds of components by literature mining, and defined their boundaries based on biological processes. After that, the structure of the efficacy systems was clarified according to the relationship in the KEGG database. Finally, the function of the efficacy systems was analyzed from the level of pharmacology, pharmacodynamics, and efficacy, revealing the scientific connotation of traditional Chinese medicine efficacy system. The results showed that there were 201 targets(elements), 12 target sets(boundary), and 12 pathway networks(structure) in salvianolic acids' efficacy system. Meanwhile, there were 189 targets(elements), 11 target sets(boundary), and 11 pathway networks(structure) in tanshinones' efficacy system. The results suggested that the functions of salvia-nolic acids' and tanshinones' efficacy systems were different in pharmacology and pharmacodynamics from aspects of elements, boundary, relationship and structure, but they were same in functional level as both of them could promote blood circulation, remove blood stasis, clear away heart-fire, relieve restlessness, and soothe the nerves. Based on systematic traditional Chinese medicine, we constructed the efficacy system of two representative components in Salviae Miltiorrhizae Radix et Rhizoma in this paper, elucidated the overall efficacy and builded the bridge between reductionism and holism in traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Ácidos , Medicina Tradicional Chinesa , Raízes de Plantas , Rizoma
12.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5446-5450, 2019 Dec.
Artigo em Zh | MEDLINE | ID: mdl-32237393

RESUMO

The purpose of this study was to investigate the feasibility of the salvianolic acids reference extract for quality control for Salvia miltiorrhiza and salvianolic acids for injection. An Agilent ZORBAX SB-C18( 4. 6 mm×250 mm,5 µm) column was used with mobile phase consisting of 0. 1% formic acid-water and 0. 1% formic acid-acetonitrile in gradient elution procedure. The column temperature was 30 ℃; the flow rate was 1 m L·min-1; and the detection wavelength was 288 nm. The content of rosmarinic acid,lithospermic acid and salvianolic acid B in S. miltiorrhiza was determined by using the salvianolic acids reference extract as control substance. The content of caffeic acid,salvianolic acid E,rosmarinic acid,lithospermic acid,salvianolic acid B,and salvianolic acid Y in the salvianolic acids for injection was also determined. The linear relationship between chemicals was good( r>0. 998 9),and the injection precision RSD was 0. 30%-0. 90%. The sexual RSD is between 1. 4% and 3. 0%,and the RSD of the reproducibility of the extract is between 2. 1% and 5. 2%. The recovery rate of the three components in S. miltiorrhiza was 96. 80%-99. 20%,and the recovery rate of the six components in salvianolic acids for injection was 88. 90%-107. 5%. The solution of S. miltiorrhiza and salvianolic acids for injection were stable within 48 h. A total of 8 batches of S. miltiorrhiza and injection were determined by the reference extract,and the difference was smaller than that measured by the monomer control. This study preliminarily verified that the salvianolic acids reference extract can be used as a substitute for the monomer control for the quality control of S. miltiorrhiza and salvianolic acids for injection.


Assuntos
Alcenos/análise , Medicamentos de Ervas Chinesas/análise , Polifenóis/análise , Controle de Qualidade , Salvia miltiorrhiza/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/normas , Reprodutibilidade dos Testes
13.
Int J Mol Sci ; 19(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401682

RESUMO

Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aß) pathologies among others and neuronal regeneration from stem cells.


Assuntos
Alcenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Cinamatos/farmacologia , Demência Vascular/tratamento farmacológico , Depsídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Polifenóis/farmacologia , Alcenos/isolamento & purificação , Alcenos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Diferenciação Celular , Cinamatos/isolamento & purificação , Cinamatos/metabolismo , Demência Vascular/genética , Demência Vascular/metabolismo , Demência Vascular/patologia , Depsídeos/isolamento & purificação , Depsídeos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lactatos/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/metabolismo , Nootrópicos/isolamento & purificação , Nootrópicos/metabolismo , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética , Proteínas tau/metabolismo , Ácido Rosmarínico
14.
Molecules ; 23(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413117

RESUMO

Inhibition of glycogen synthase kinase 3ß (GSK-3ß) is considered to be the central therapeutic approach against Alzheimer's disease (AD). In the present study, boiled water extracts of the Kangen-karyu (KK) herbal mixture and its constituents were screened for GSK-3ß inhibitory activity. KK is used in traditional Kampo and Chinese medicines for improving cognitive function. The GSK-3ß inhibition potential was evaluated by using the Kinase-Glo luminescent kinase assay platform. Furthermore, enzyme kinetics and in silico modeling were performed by using AutoDockTools to demonstrate the mechanism of enzyme inhibition. KK extract significantly inhibited GSK-3ß in a concentration-dependent manner (IC50: 17.05 ± 1.14 µg/mL) when compared with the reference drug luteolin (IC50: 2.18 ± 0.13 µM). Among the six components of KK, extracts of Cyperi Rhizoma and Salviae Miltiorrhizae Radix significantly inhibited GSK-3ß with IC50 values of 20.68 ± 2.50 and 7.77 ± 1.38 µg/mL, respectively. Among the constituents of the roots of S. miltiorrhiza water extract, rosmarinic acid, magnesium lithospermate B, salvianolic acid A, salvianolic acid B, and salvianolic acid C inhibited GSK-3ß with IC50 values ranging from 6.97 to 135.5 µM. Salvianolic acid B was found to be an ATP-competitive inhibitor of GSK-3ß and showed the lowest IC50 value (6.97 ± 0.96 µM). In silico modeling suggested a mechanism of action by which the hydrophobic, π⁻cation, and hydrophilic interactions of salvianolic acid B at ATP and substrate sites are critical for the observed GSK-3ß inhibition. Therefore, one of the mechanisms of action of KK against AD may be the inhibition of GSK-3ß and one of the active components of KK is the root of S. miltiorrhiza and its constituents: rosmarinic acid, magnesium lithospermate B, and salvianolic acids A, B, and C. Our results demonstrate the pharmacological basis for the use of KK against AD.


Assuntos
Doença de Alzheimer/enzimologia , Medicamentos de Ervas Chinesas/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Alcenos/química , Alcenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Benzofuranos/química , Benzofuranos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Simulação por Computador , Depsídeos/química , Depsídeos/farmacologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Glicogênio Sintase Quinase 3 beta/química , Humanos , Lactatos/química , Lactatos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Raízes de Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Ácido Rosmarínico
15.
Molecules ; 23(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453465

RESUMO

For drugs with high hydrophilicity and poor membrane permeability, absorption enhancers can promote membrane permeability and improve oral bioavailability. Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) is a new kind of absorption enhancer that has good safety. To investigate the absorption enhancement effect of SNAC on non-polar charged and polar charged drugs and establish the absorption enhancement mechanism of SNAC, SNAC was synthesized and characterized. Two representative hydrophilic drugs-notoginsenoside R1 (R1) and salvianolic acids (SAs)-were selected as model drugs. In vitro Caco-2 cells transport and in vivo rat pharmacokinetics studies were conducted to examine the permeation effect of SNAC on R1 and SAs. R1, rosmarinic acid (RA), salvianolic acid B (SA-B) and salvianolic acid B (SA-A) were determined to compare the permeation enhancement of different drugs. The MTT assay results showed that SNAC had no toxicity to Caco-2 cells. The transepithelial electrical resistance (TEER) of Caco-2 cell monolayer displayed that SNAC facilitated passive transport of polar charged SAs through the membrane of epithelial enterocytes. The pharmacokinetics results demonstrated that area under the curve (AUC) of RA, SA-B and SA-A with administration of SAs containing SNAC was 35.27, 8.72 and 9.23 times than administration of SAs. Tmax of RA, SA-B and SA-A were also prolonged. The AUC of R1 with administration of R1 containing SNAC was 2.24-times than administration of R1. SNAC is more effective in promoting absorption of SAs than R1. The study demonstrated that SNAC significantly improved bioavailability of R1 and SAs. What's more, the effect of SNAC on absorption enhancement of charged drugs was larger than that of non-charged drugs. The current findings not only confirm the usefulness of SNAC for the improved delivery of R1 and SAs but also demonstrate the importance of biopharmaceutics characterization in the dosage form development of drugs.


Assuntos
Alcenos/farmacocinética , Caprilatos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ginsenosídeos/farmacocinética , Intestinos/fisiologia , Polifenóis/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Caprilatos/administração & dosagem , Humanos , Absorção Intestinal , Intestinos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
16.
J Neurochem ; 143(1): 87-99, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28771727

RESUMO

Post-stroke angiogenesis facilitates neurovascular remodeling process and promotes neurological recovery. Proangiogenic effects of Salvianolic acids (Sals) have been reported in various ischemic disorders. However, the underlying mechanisms are still poorly understood. Previous studies of our laboratory have demonstrated that activating Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway is involved in the protection against cerebral ischemia/reperfusion injury. In this study, we investigated the impacts of Sals on angiogenesis and long-term neurological recovery after ischemic stroke as well as the potential mechanisms. Male mice subjected to permanent distal middle cerebral artery occlusion were administrated with Sals, 5-bromo-2'-deoxyuridine, and JAK2 inhibitor AG490 once daily from day 1 to day 14 after distal middle cerebral artery occlusion. Compared with the control group, Sals treatment significantly improved neurological recovery at day 14 and 28 after ischemic stroke. Sals enhanced post-stroke angiogenesis, pericytes and astrocytic endfeet covered ratio in the peri-infarct area. The JAK2/STAT3 signaling pathway was activated by Sals in the angiogenesis process, and inhibition of JAK2/STAT3 signaling blocked the effects of Sals on post-stroke angiogenesis and neurological recovery as well as abolished the mediation of proangiogenic factors. In summary, these data suggest that Sals administration enhances cerebral angiogenesis and promotes neurological recovery after ischemic stroke, mediated by the activation of JAK2/STAT3 signaling pathway.


Assuntos
Alcenos/farmacologia , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Janus Quinase 2/metabolismo , Polifenóis/farmacologia , Fator de Transcrição STAT3/metabolismo , Acidente Vascular Cerebral/metabolismo , Alcenos/uso terapêutico , Animais , Isquemia Encefálica/tratamento farmacológico , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polifenóis/uso terapêutico , Distribuição Aleatória , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico
17.
Bioorg Med Chem Lett ; 26(1): 82-6, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602274

RESUMO

The total salvianolic acids are main effective constituents of Salvia miltiorrhiza Bge., a traditional Chinese medicine used for thousands of years. The purpose of present study was to make clear the composition and bioactivities of the minor components of the total salvianolic acids injection. As a result, three new minor phenolic acids (1-3) together with six known compounds (4-9) were characterized from the total salvianolic acids injection. Their structures were elucidated by extensive analysis of the spectral data. The absolute configuration of compounds 1-3 were confirmed by their J7',8' observed in (1)H NMR spectra, absorption band at approximately 250-260nm in their CD spectra as well as chemical shifts of C-8″ and C-8‴ displayed in (13)C NMR spectra. Then DPPH free radical scavenging assay and NAD(P)H: quinine oxidoreductase 1 (NQO1) inducing activity test were employed to evaluate the antioxidant effect of new minor compounds 1 and 2. Compound 2 showed significant NQO1 inducing activity at 20µM with IR value 2.6. Meanwhile, DPPH scavenging assay revealed that the inhibition rates of compounds 1 and 2 were 84.3% and 74.9% at 2mM, respectively.


Assuntos
Alcenos/química , Polifenóis/química , Salvia miltiorrhiza/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
18.
Zhongguo Zhong Yao Za Zhi ; 41(4): 659-665, 2016 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28871689

RESUMO

Salvianolic acids and tanshinones are main hydrophilic and lipophilic extracts from Salvia Miltiorrhiza with significant anti-pulmonary fibrosis effects. The aim of this study was to prepare a co-micronized salvianolic acids-tanshinones composite powder for inhalation using a planetary ball mill. The micronization process parameters were optimized by central composite design (CCD) and response surface methodology (RSM). Treatment time, rotation speed and the ball/sample weight ratio were selected as the independent variables, and the volume fraction of particle size in 1-5 µm was taken as the dependent variable. The powder properties were evaluated by scanning electron microscopy (SEM), laser diffraction and X-ray powder diffraction (XRPD). The powder flow and hygroscopicity were determined with repose angle, compressibility index and critical relative humidity(CRH). According to the results, the salvianolic acids-tanshinones composite powder produced in optimal conditions had a narrow and unimodal particle size distribution and a smaller D50 of 2.33 µm. The volume fraction of particle size in 1-5 µm was 80.82%. The repose angle was (50.60±1.13) °, and the critical relative humidity is about 77%. After being micronized, the particle size significantly reduced, and the number of amorphous substances slightly increased, with no significant changes in powder flow and hygroscopicity. These findings indicate that the grinding method with a planetary ball mill can be used to co-micronize various components with different properties and prepare composite drug powders for dry powder inhalation.


Assuntos
Abietanos/química , Alcenos/química , Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/química , Polifenóis/química , Salvia miltiorrhiza/química , Inaladores de Pó Seco , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós/química , Molhabilidade , Difração de Raios X
19.
Zhongguo Zhong Yao Za Zhi ; 41(5): 806-812, 2016 Mar.
Artigo em Zh | MEDLINE | ID: mdl-28875631

RESUMO

Salvia miltiorrhiza is one of the most common traditional Chinese medicines. It has rich resources in China. According to modern studies, phenolic acids are the main effective components in S. miltiorrhiza. These components have cardiovascular and cerebrovascular protective effect, and anti-tumor, antioxidant, anti-inflammatory, and antifibrotic activities, etc. It has been widely used for the treatment of cardiovascular and cerebrovascular diseases and others. In this paper, the chemicals and pharmacological effects of phenolic acids from S. miltiorrhiza were summarized in the last decade. Its researches and development prospects were also analyzed for further studying and comprehensive utilization of these phenolic acids.


Assuntos
Alcenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Polifenóis/farmacologia , Salvia miltiorrhiza/química , Alcenos/química , Animais , Tratamento Farmacológico , Medicamentos de Ervas Chinesas/química , Humanos , Estrutura Molecular , Polifenóis/química
20.
Zhongguo Zhong Yao Za Zhi ; 41(6): 1107-1112, 2016 Mar.
Artigo em Zh | MEDLINE | ID: mdl-28875678

RESUMO

In this paper, human umbilical vein endothelial cells (HUVEC) hypoxic injury models were established by sodium dithionite (Na2S2O4). With the protective effects of total salvianolic acids components (TSAC) against oxidative damage of HUVEC as a starting point, cellviability was measured by MTT colorimetric method; intracellular superoxide dismutase (SOD) activity, malondialdehyde (MDA), lactatedehydrogenase (LDH) level, nitric oxide (NO) level, interleukin6 (IL-6), and human tumor necrosis factor α (TNF-α) expression were measured by kits, to investigate the effect of seven kinds of phenolic acids of TSAC on Na2S2O4-induced HUVEC hypoxic injury. Based on the "component structure" theory, the contribution of the main components in TSAC for the protective effect on hypoxic injury of HUVEC was studied. The results showed that salvianolic acid B, posrnarinic acid A, salvianolic acid A, lactic acid, and lithospermic acid in TSAC play a larger role in protective effect of hypoxic injury of HUVEC. These five components were administered in combinations respectively, and it was concluded that the four components including salvianolic acid B, posrnarinic acid A, salvianolic acid A, lactic acid could be used as the representative components of TSAC.


Assuntos
Alcenos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA