Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.588
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
2.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007181

RESUMO

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Assuntos
Canalopatias , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Canal de Cátion TRPC6/metabolismo , Canalopatias/metabolismo , Canais de Cátion TRPC/metabolismo , Glomérulos Renais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Nefropatias/metabolismo
3.
Am J Hum Genet ; 110(2): 240-250, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669496

RESUMO

Spinal muscular atrophy, a leading cause of early infant death, is caused by bi-allelic mutations of SMN1. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2. Both genes have variable copy numbers across populations. Furthermore, without pedigree information, it is currently not possible to identify silent carriers (2+0) with two copies of SMN1 on one chromosome and zero copies on the other. We developed Paraphase, an informatics method that identifies full-length SMN1 and SMN2 haplotypes, determines the gene copy numbers, and calls phased variants using long-read PacBio HiFi data. The SMN1 and SMN2 copy-number calls by Paraphase are highly concordant with orthogonal methods (99.2% for SMN1 and 100% for SMN2). We applied Paraphase to 438 samples across 5 ethnic populations to conduct a population-wide haplotype analysis of these highly homologous genes. We identified major SMN1 and SMN2 haplogroups and characterized their co-segregation through pedigree-based analyses. We identified two SMN1 haplotypes that form a common two-copy SMN1 allele in African populations. Testing positive for these two haplotypes in an individual with two copies of SMN1 gives a silent carrier risk of 88.5%, which is significantly higher than the currently used marker (1.7%-3.0%). Extending beyond simple copy-number testing, Paraphase can detect pathogenic variants and enable potential haplotype-based screening of silent carriers through statistical phasing of haplotypes into alleles. Future analysis of larger population data will allow identification of more diverse haplotypes and genetic markers for silent carriers.


Assuntos
Atrofia Muscular Espinal , Lactente , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Mutação , Dosagem de Genes , Linhagem , Análise de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
4.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376487

RESUMO

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Assuntos
Balaenoptera , Neoplasias , Animais , Balaenoptera/genética , Duplicações Segmentares Genômicas , Genoma , Demografia , Neoplasias/genética
5.
Annu Rev Genet ; 51: 123-141, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29178821

RESUMO

Genetic mosaicism arises when a zygote harbors two or more distinct genotypes, typically due to de novo, somatic mutation during embryogenesis. The clinical manifestations largely depend on the differentiation status of the mutated cell; earlier mutations target pluripotent cells and generate more widespread disease affecting multiple organ systems. If gonadal tissue is spared-as in somatic genomic mosaicism-the mutation and its effects are limited to the proband, whereas mosaicism also affecting the gametes, such as germline or gonosomal mosaicism, is transmissible. Mosaicism is easily appreciated in cutaneous disorders, as phenotypically distinct mutant cells often give rise to lesions in patterns determined by the affected cell type. Genetic investigation of cutaneous mosaic disorders has identified pathways central to disease pathogenesis, revealing novel therapeutic targets. In this review, we discuss examples of cutaneous mosaicism, approaches to gene discovery in these disorders, and insights into molecular pathobiology that have potential for clinical translation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mosaicismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Dermatopatias Genéticas/genética , Ectoderma/metabolismo , Ectoderma/patologia , Embrião de Mamíferos , Endoderma/metabolismo , Endoderma/patologia , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratina-10/genética , Queratina-10/metabolismo , Microdissecção e Captura a Laser , Mesoderma/metabolismo , Mesoderma/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/patologia , Fatores de Tempo , Sequenciamento do Exoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-39370995

RESUMO

Despite the availability of multiple classes of lipoprotein-lowering medications, some high-risk patients have persistent hypercholesterolemia and may require nonpharmacologic therapy. Lipoprotein apheresis (LA) is a valuable but underused adjunctive therapeutic option for low-density lipoprotein cholesterol and lipoprotein(a) lowering, particularly in children and adults with familial hypercholesterolemia. In addition to lipid lowering, LA reduces serum levels of proinflammatory and prothrombotic factors, reduces blood viscosity, increases microvascular myocardial perfusion, and may provide beneficial effects on endothelial function. Multiple observational studies demonstrate strong evidence for improved cardiovascular outcomes with LA; however, use in the United States is limited to a fraction of its Food and Drug Administration-approved indications. In addition, there are limited data regarding LA benefit for refractory focal segmental glomerulosclerosis. In this scientific statement, we review the history of LA, mechanisms of action, cardiovascular and renal outcomes data, indications, and options for treatment.

7.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916773

RESUMO

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Assuntos
Forminas , Mitose , Podócitos , Transcriptoma , Humanos , Mitose/genética , Podócitos/metabolismo , Podócitos/patologia , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Morte Celular/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , Mutação , Núcleo Celular/metabolismo , Núcleo Celular/genética , Linhagem Celular
8.
Nano Lett ; 24(30): 9331-9336, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39017745

RESUMO

Understanding the evolution of local structure and mobility of disordered glassy materials induced by external stress is critical in modeling their mechanical deformation in the nonlinear regime. Several techniques have shown acceleration of molecular mobility of various amorphous glasses under macroscopic tensile deformation, but it remains a major challenge to visualize such a relationship at the nanoscale. Here, we employ a new approach based on atomic force microscopy in nanorheology mode for quantifying the local dynamic responses of a polymer glass induced by nanoscale compression. By increasing the compression level from linear elastic to plastic deformation, we observe an increase in the mechanical loss tangent (tan δ), evidencing the enhancement of polymer mobility induced by large stress. Notably, tan δ images directly reveal the preferential effect of the large compression on the dynamic acceleration of nanoscale heterogeneities with initially slow mobility, which is clearly different from that induced by increasing temperature.

9.
J Neurosci ; 43(11): 1871-1887, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36823038

RESUMO

Corticospinal neurons (CSN) are centrally required for skilled voluntary movement, which necessitates that they establish precise subcerebral connectivity with the brainstem and spinal cord. However, molecular controls regulating specificity of this projection targeting remain largely unknown. We previously identified that developing CSN subpopulations exhibit striking axon targeting specificity in the spinal white matter. These CSN subpopulations with segmentally distinct spinal projections are also molecularly distinct; a subset of differentially expressed genes between these distinct CSN subpopulations regulate differential axon projection targeting. Rostrolateral CSN extend axons exclusively to bulbar-cervical segments (CSNBC-lat), while caudomedial CSN (CSNmedial) are more heterogeneous, with distinct, intermingled subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. Here, we report, in male and female mice, that Cerebellin 1 (Cbln1) is expressed specifically by CSN in medial, but not lateral, sensorimotor cortex. Cbln1 shows highly dynamic temporal expression, with Cbln1 levels in CSN highest during the period of peak axon extension toward thoraco-lumbar segments. Using gain-of-function experiments, we identify that Cbln1 is sufficient to direct thoraco-lumbar axon extension by CSN. Misexpression of Cbln1 in CSNBC-lat either by in utero electroporation, or by postmitotic AAV-mediated gene delivery, redirects these axons past their normal bulbar-cervical targets toward thoracic segments. Further, Cbln1 overexpression in postmitotic CSNBC-lat increases the number of CSNmedial axons that extend past cervical segments into the thoracic cord. Collectively, these results identify that Cbln1 functions as a potent molecular control over thoraco-lumbar CSN axon extension, part of an integrated network of controls over segmentally-specific CSN axon projection targeting.SIGNIFICANCE STATEMENT Corticospinal neurons (CSN) exhibit remarkable diversity and precision of axonal projections to targets in the brainstem and distinct spinal segments; the molecular basis for this targeting diversity is largely unknown. CSN subpopulations projecting to distinct targets are also molecularly distinguishable. Distinct subpopulations degenerate in specific motor neuron diseases, further suggesting that intrinsic molecular differences might underlie differential vulnerability to disease. Here, we identify a novel molecular control, Cbln1, expressed by CSN extending axons to thoraco-lumbar spinal segments. Cbln1 is sufficient, but not required, for CSN axon extension toward distal spinal segments, and Cbln1 expression is controlled by recently identified, CSN-intrinsic regulators of axon extension. Our results identify that Cbln1, together with other regulators, coordinates segmentally precise CSN axon targeting.


Assuntos
Axônios , Medula Espinal , Feminino , Masculino , Animais , Camundongos , Axônios/fisiologia , Medula Espinal/fisiologia , Neurônios/fisiologia , Neuritos , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/metabolismo
10.
J Proteome Res ; 23(6): 2090-2099, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38728052

RESUMO

Idiopathic nephrotic syndrome (NS) is a heterogeneous group of glomerular disorders which includes two major phenotypes: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). MCD and FSGS are classic types of primary podocytopathies. We aimed to explore the molecular mechanisms in NS triggered by primary podocytopathies and evaluate diagnostic value of the selected proteomic signatures by analyzing blood proteome profiling. Totally, we recruited 90 participants in two cohorts. The first cohort was analyzed using label-free quantitative (LFQ) proteomics to discover differential expressed proteins and identify enriched biological process in NS which were further studied in relation to clinical markers of kidney injury. The second cohort was analyzed using parallel reaction monitoring-based quantitative proteomics to verify the data of LFQ proteomics and assess the diagnostic performance of the selected proteins using receiver-operating characteristic curve analysis. Several biological processes (such as immune response, cell adhesion, and response to hypoxia) were found to be associated with kidney injury during MCD and FSGS. Moreover, three proteins (CSF1, APOC3, and LDLR) had over 90% sensitivity and specificity in detecting adult NS triggered by primary podocytopathies. The identified biological processes may play a crucial role in MCD and FSGS pathogenesis. The three blood protein markers are promising for diagnosing adult NS triggered by primary podocytopathies.


Assuntos
Biomarcadores , Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Podócitos , Proteômica , Humanos , Síndrome Nefrótica/sangue , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/metabolismo , Proteômica/métodos , Adulto , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/patologia , Feminino , Nefrose Lipoide/diagnóstico , Nefrose Lipoide/metabolismo , Masculino , Podócitos/metabolismo , Podócitos/patologia , Biomarcadores/sangue , Proteoma/análise , Pessoa de Meia-Idade , Estudos de Coortes , Curva ROC
11.
BMC Genomics ; 25(1): 217, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413905

RESUMO

BACKGROUND: The genomic region that lies between the telomere and chromosome body, termed the subtelomere, is heterochromatic, repeat-rich, and frequently undergoes rearrangement. Within this region, large-scale structural changes enable gene diversification, and, as such, large multicopy gene families are often found at the subtelomere. In some parasites, genes associated with proliferation, invasion, and survival are often found in these regions, where they benefit from the subtelomere's highly plastic, rapidly changing nature. The increasing availability of complete (or near complete) parasite genomes provides an opportunity to investigate these typically poorly defined and overlooked genomic regions and potentially reveal relevant gene families necessary for the parasite's lifestyle. RESULTS: Using the latest chromosome-scale genome assembly and hallmark repeat richness observed at chromosome termini, we have identified and characterised the subtelomeres of Schistosoma mansoni, a metazoan parasitic flatworm that infects over 250 million people worldwide. Approximately 12% of the S. mansoni genome is classified as subtelomeric, and, in line with other organisms, we find these regions to be gene-poor but rich in transposable elements. We find that S. mansoni subtelomeres have undergone extensive interchromosomal recombination and that these sites disproportionately contribute to the 2.3% of the genome derived from segmental duplications. This recombination has led to the expansion of subtelomeric gene clusters containing 103 genes, including the immunomodulatory annexins and other gene families with unknown roles. The largest of these is a 49-copy plexin domain-containing protein cluster, exclusively expressed in the tegument-the tissue located at the host-parasite physical interface-of intramolluscan life stages. CONCLUSIONS: We propose that subtelomeric regions act as a genomic playground for trial-and-error of gene duplication and subsequent divergence. Owing to the importance of subtelomeric genes in other parasites, gene families implicated in this subtelomeric expansion within S. mansoni warrant further characterisation for a potential role in parasitism.


Assuntos
Schistosoma mansoni , Telômero , Humanos , Animais , Schistosoma mansoni/genética , Telômero/genética , Genômica , Duplicação Gênica , Família Multigênica
12.
Am J Physiol Renal Physiol ; 327(3): F463-F475, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991006

RESUMO

Identifying effective drugs for focal segmental glomerulosclerosis (FSGS) treatment holds significant importance. Our high-content drug screening on zebrafish larvae relies on nitroreductase/metronidazole (NTR/MTZ)-induced podocyte ablation to generate FSGS-like injury. A crucial factor for successful drug screenings is minimizing variability in injury induction. For this, we introduce nifurpirinol (NFP) as a more reliable prodrug for targeted podocyte depletion. NFP showed a 2.3-fold increase in efficiency at concentrations 1,600-fold lower compared with MTZ-mediated injury induction. Integration into the screening workflow validated its suitability for the high-content drug screening. The presence of crucial FSGS hallmarks, such as podocyte foot process effacement, proteinuria, and activation of parietal epithelial cells, was observed. After the isolation of the glomeruli from the larvae, we identified essential pathways by proteomic analysis. This study shows that NFP serves as a highly effective prodrug to induce the FSGS-like disease in zebrafish larvae and is well-suited for a high-content drug screening to identify new candidates for the treatment of FSGS.NEW & NOTEWORTHY This research investigated the use of nifurpirinol in nanomolar amounts as a prodrug to reliably induce focal segmental glomerulosclerosis (FSGS)-like damage in transgenic zebrafish larvae. Through proteomic analysis of isolated zebrafish glomeruli, we were further able to identify proteins that are significantly regulated after the manifestation of FSGS. These results are expected to expand our knowledge of the pathomechanism of FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Larva , Podócitos , Peixe-Zebra , Animais , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/genética , Larva/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Modelos Animais de Doenças , Proteômica , Pró-Fármacos/farmacologia , Nitrorredutases/metabolismo , Nitrorredutases/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
13.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855038

RESUMO

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Idoso , Podócitos/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Nefropatias/metabolismo , Envelhecimento , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo
14.
Kidney Int ; 105(6): 1279-1290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554992

RESUMO

Evidence from the Oxford IgA nephropathy (IgAN) cohort supports the clinical value of subclassifying focal segmental glomerulosclerosis lesions (S1). Using the larger Validation in IgA (VALIGA) study cohort, we investigated the association between podocytopathic changes and higher proteinuria, kidney outcome and response to immunosuppressive therapy. All biopsies were evaluated for glomeruli with segmental capillary occlusion by matrix ("not otherwise specified", NOS lesion), simple capsular adhesion without capillary occlusion (Adh), tip lesions, and podocyte hypertrophy (PH). S1 required a NOS lesion and/or Adh. A Chi-Squared Automatic Interaction Detection method was used to identify subgroups of FSGS lesions associated with distinctive proteinuria at biopsy. We assessed survival from a combined event (kidney failure or 50% decline in estimated glomerular filtration rate). Finally, we evaluated within each subgroup if immunosuppression was associated with a favorable outcome using propensity analysis. In 1147 patients, S1 was found in 70% of biopsies. Subclassification found NOS lesions in 44%, Adh in 59%, PH in 13%, and tip lesions in 3%, with much overlap. Four subgroups were identified with progressively higher proteinuria: from lowest, S1 without NOS, S1 with NOS but without Adh/PH, to highest, S1 with NOS and Adh but without PH, and S1 with NOS and PH. These four subgroups showed progressively worse kidney survival. Immunosuppression was associated with a better outcome only in the two highest proteinuria subgroups. Propensity analysis in these two groups, adjusted for clinical and pathological findings, found a significantly reduced time-dependent hazard of combined outcome with corticosteroids. Podocyte hypertrophy and glomeruli with simple adhesions appeared to reflect active lesions associated with a response to corticosteroids, while other S1 lesions defined chronicity. Thus, our findings support subclassifying S1 lesions in IgAN.


Assuntos
Taxa de Filtração Glomerular , Glomerulonefrite por IGA , Glomerulosclerose Segmentar e Focal , Imunossupressores , Proteinúria , Humanos , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/classificação , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/imunologia , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/classificação , Glomerulosclerose Segmentar e Focal/imunologia , Masculino , Feminino , Adulto , Proteinúria/etiologia , Proteinúria/patologia , Biópsia , Pessoa de Meia-Idade , Imunossupressores/uso terapêutico , Podócitos/patologia , Podócitos/imunologia , Glomérulos Renais/patologia , Glomérulos Renais/imunologia , Hipertrofia , Progressão da Doença , Resultado do Tratamento
15.
Kidney Int ; 105(3): 608-617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110152

RESUMO

Possible roles of anti-nephrin antibodies in post-transplant recurrent focal segmental glomerulosclerosis (FSGS) have been reported recently. To confirm these preliminary results, we performed a multi-institutional study of 22 Japanese pediatric kidney transplant recipients with FSGS including eight genetic FSGS and 14 non-genetic (presumed primary) FSGS. Eleven of the 14 non-genetic FSGS patients had post-transplant recurrent FSGS. Median (interquartile range) plasma levels of anti-nephrin antibodies in post-transplant recurrent FSGS measured using ELISA were markedly high at 899 (831, 1292) U/mL (cutoff 231 U/mL) before transplantation or during recurrence. Graft biopsies during recurrence showed punctate IgG deposition co-localized with nephrin that had altered localization with increased nephrin tyrosine phosphorylation and Src homology and collagen homology A expressions. Graft biopsies after remission showed no signals for IgG and a normal expression pattern of nephrin. Anti-nephrin antibody levels decreased to 155 (53, 367) U/mL in five patients with samples available after remission. In patients with genetic FSGS as in those with non-genetic FSGS without recurrence, anti-nephrin antibody levels were comparable to those of 30 control individuals, and graft biopsies had no signals for IgG and a normal expression pattern of nephrin. Thus, our results suggest that circulating anti-nephrin antibodies are a possible candidate for circulating factors involved in the pathogenesis of post-transplant recurrent FSGS and that this may be mediated by nephrin phosphorylation. Larger studies including other ethnicities are required to confirm this finding.


Assuntos
Glomerulosclerose Segmentar e Focal , Transplante de Rim , Humanos , Criança , Glomerulosclerose Segmentar e Focal/patologia , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Proteínas de Membrana/genética , Imunoglobulina G , Recidiva
16.
Kidney Int ; 105(3): 450-463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142038

RESUMO

Focal segmental glomerular sclerosis (FSGS) is 1 of the primary causes of nephrotic syndrome in both pediatric and adult patients, which can lead to end-stage kidney disease. Recurrence of FSGS after kidney transplantation significantly increases allograft loss, leading to morbidity and mortality. Currently, there are no consensus guidelines for identifying those patients who are at risk for recurrence or for the management of recurrent FSGS. Our work group performed a literature search on PubMed/Medline, Embase, and Cochrane, and recommendations were proposed and graded for strength of evidence. Of the 614 initially identified studies, 221 were found suitable to formulate consensus guidelines for recurrent FSGS. These guidelines focus on the definition, epidemiology, risk factors, pathogenesis, and management of recurrent FSGS. We conclude that additional studies are required to strengthen the recommendations proposed in this review.


Assuntos
Glomerulosclerose Segmentar e Focal , Transplante de Rim , Síndrome Nefrótica , Adulto , Humanos , Criança , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/epidemiologia , Glomerulosclerose Segmentar e Focal/etiologia , Esclerose/complicações , Transplante de Rim/efeitos adversos , Transplante Homólogo/efeitos adversos , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/terapia , Recidiva , Plasmaferese
17.
Kidney Int ; 105(5): 1049-1057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401706

RESUMO

Focal segmental glomerulosclerosis (FSGS) lesions have been linked to variants in COL4A3/A4/A5 genes, which are also mutated in Alport syndrome. Although it could be useful for diagnosis, quantitative evaluation of glomerular basement membrane (GBM) type IV collagen (colIV) networks is not widely used to assess these patients. To do so, we developed immunofluorescence imaging for collagen α5(IV) and α1/2(IV) on kidney paraffin sections with Airyscan confocal microscopy that clearly distinguishes GBM collagen α3α4α5(IV) and α1α1α2(IV) as two distinct layers, allowing quantitative assessment of both colIV networks. The ratios of collagen α5(IV):α1/2(IV) mean fluorescence intensities (α5:α1/2 intensity ratios) and thicknesses (α5:α1/2 thickness ratios) were calculated to represent the levels of collagen α3α4α5(IV) relative to α1α1α2(IV). The α5:α1/2 intensity and thickness ratios were comparable across all 11 control samples, while both ratios were significantly and markedly decreased in all patients with pathogenic or likely pathogenic Alport COL4A variants, supporting validity of this approach. Thus, with further validation of this technique, quantitative measurement of GBM colIV subtype abundance by immunofluorescence, may potentially serve to identify the subgroup of patients with FSGS lesions likely to harbor pathogenic COL4A variants who could benefit from genetic testing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Humanos , Membrana Basal Glomerular/patologia , Colágeno Tipo IV/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Parafina , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Membrana Basal/patologia
18.
Kidney Int ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181397

RESUMO

Apolipoprotein L1 (APOL1) variants G1 and G2 contribute to the excess risk of kidney disease in individuals of recent African ancestry. Since disease mechanisms and optimal treatments remain controversial, we study the effect of current standard-of-care drugs in mouse models of APOL1 kidney disease. Experiments were performed in APOL1 BAC-transgenic mice, which develop proteinuria and glomerulosclerosis following injection with a pCpG-free IFN-γ plasmid. Proteinuric, plasmid injected G1/G1 and G2/G2 mice were randomized to drug treatment or no treatment. Lisinopril, dapagliflozin, and hydralazine were administered in drinking water starting day seven. The urine albumin/creatinine ratio was measured twice weekly, and the kidneys examined histologically with the focal segmental glomerulosclerosis score computed from periodic acid-Shiff-stained sections. The angiotensin converting enzyme inhibitor lisinopril, at standard dose, reduced proteinuria by approximately 90-fold and reduced glomerulosclerosis in the APOL1 G1/G1 BAC-transgenic mice. These effects were independent of blood pressure. Dapagliflozin did not alter disease progression in either G1/G1 or G2/G2 mice. Proteinuria reduction and glomerulosclerosis in G2/G2 BAC-transgenic mice required lisinopril doses two times higher than were effective in G1/G1 mice but achieved a much smaller benefit. Therefore, in these BAC-transgenic mouse models of APOL1 disease, the anti-proteinuric and anti-glomerulosclerotic effects of standard dose lisinopril were markedly effective in G1/G1 compared with G2/G2 APOL1 mice. Comparable reduction in blood pressure by hydralazine treatment provided no such protection. Neither G1/G1 nor G2/G2 mice showed improvement with the sodium-glucose cotransporter-2 inhibition dapagliflozin. Thus, it remains to be determined if similar differences in ACE inhibitor responsiveness are observed in patients.

19.
Plant Cell Physiol ; 65(8): 1310-1327, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38878059

RESUMO

The leaf is a determinate organ with a final size under genetic control. Numerous factors that regulate the final leaf size have been identified in Arabidopsis thaliana; although most of these factors play their roles during the growth of leaf primordia, much less is known about leaf initiation and its effects on the final leaf size. In this study, we characterized oligocellula6-D (oli6-D), a semidominant mutant of A. thaliana with smaller leaves than the wild type (WT) due to its reduced leaf cell numbers. A time-course analysis showed that oli6-D had approximately 50% fewer leaf cells even immediately after leaf initiation; this difference was maintained throughout leaf development. Next-generation sequencing showed that oli6-D had chromosomal duplications involving 2-kb and 3-Mb regions of chromosomes 2 and 4, respectively. Several duplicated genes examined had approximately 2-fold higher expression levels, and at least one gene acquired a new intron/exon structure due to a chromosome fusion event. oli6-D showed reduced auxin responses in leaf primordia, primary roots and embryos, as well as reduced apical dominance and partial auxin-resistant root growth. CRISPR-associated protein-9-mediated genome editing enabled the removal of a 3-Mb duplicated segment, the largest targeted deletion in plants thus far. As a result, oli6-D restored the WT leaf phenotypes, demonstrating that oli6-D is a gain-of-function mutant. Our results suggest a new regulatory point of leaf size determination that functions at a very early stage of leaf development and is negatively regulated by one or more genes located in the duplicated chromosomal segments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mutação , Folhas de Planta , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Edição de Genes , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia
20.
Am J Transplant ; 24(10): 1896-1900, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029875

RESUMO

The recurrence of primary focal segmental glomerulosclerosis (FSGS) after kidney transplantation is associated with a high graft loss rate with standard treatments based on plasmapheresis with/without rituximab. We present 2 consecutive cases of nongenetic early severe recurrent FSGS refractory to rituximab and anti-interleukin 1 treatment and with a partial response to plasmapheresis. Case 1 was a 22-year-old man who was rescue-treated for recurrence 36 weeks after transplantation with obinutuzumab (1000 mg/1.73 m2, 1 dose) and daratumumab (18 mg/kg each dose, 8 doses), resulting in plasmapheresis discontinuation and a drop of proteinuria from 29 to 2.3 g/d. Proteinuria increased with circulating CD38+ plasma cells and responded to an additional daratumumab dose. Currently, the proteinuria is 1.8 g/d, 14.5 months after discontinuing plasmapheresis and starting obinutuzumab and daratumumab therapy. Case 2 was a 15-year-old girl who was plasmapheresis dependent with 2 g/d proteinuria 82 weeks after transplantation, with a Tesio catheter in the right jugular vein as the only possible vascular access. After treatment with obinutuzumab and daratumumab (1 dose each), she achieved stable complete remission (0.3 g/d proteinuria) with persistent plasmapheresis discontinuation. These cases suggest the potential of combining obinutuzumab with daratumumab for the treatment of recurrent FSGS.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Glomerulosclerose Segmentar e Focal , Transplante de Rim , Recidiva , Humanos , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/etiologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Adulto Jovem , Feminino , Adolescente , Transplante de Rim/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Plasmócitos/patologia , Linfócitos B/efeitos dos fármacos , Plasmaferese , Prognóstico , Sobrevivência de Enxerto/efeitos dos fármacos , Taxa de Filtração Glomerular , Complicações Pós-Operatórias/tratamento farmacológico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/tratamento farmacológico , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA