Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2310288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150615

RESUMO

Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.


Assuntos
Motilidade dos Espermatozoides , Espermatozoides , Espermatozoides/fisiologia , Masculino , Motilidade dos Espermatozoides/fisiologia , Técnicas de Reprodução Assistida , Humanos , Magnetismo , Animais
2.
J Exp Bot ; 74(15): 4291-4292, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37419454

RESUMO

The word 'fruit' is derived from the latin 'fructus' which itself is said to be derived from 'frui', which means to enjoy. Along those lines, I hope this year's Flowering Newsletter brings a lot of joy, because fruits and seeds feature in multiple articles.


Assuntos
Apomixia , Sementes , Frutas
3.
J Exp Bot ; 74(12): 3449-3461, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37025026

RESUMO

The fusion of male and female gametes is a fundamental process in the perpetuation and diversification of species. During the last 50 years, significant efforts have been made to isolate and characterize sperm cells from flowering plants, and to identify how these cells interact with female gametes to achieve double fertilization. The first techniques and analytical approaches not only provided structural and biochemical characterizations of plant sperm cells but also paved the way for in vitro fertilization studies. Further technological advances then led to unique insights into sperm biology at the transcriptomic, proteomic, and epigenetic level. Starting with a historical overview of sperm cell isolation techniques, we provide examples of how these contributed to create our current knowledge of sperm cell biology, and point out remaining challenges.


Assuntos
Proteômica , Sementes , Animais , Espermatozoides , Fertilização , Separação Celular
4.
Zygote ; 31(5): 433-440, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537957

RESUMO

One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.


Assuntos
Nanotecnologia , Reprodução , Feminino , Humanos , Hormônios
5.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762052

RESUMO

The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.

6.
Plant J ; 105(3): 565-579, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249677

RESUMO

During the sexual reproduction of higher plants, DNA methylation and transcription are broadly changed to reshape a microspore into two sperm cells (SCs) and a vegetative cell (VC). However, when and how the DNA methylation of SCs is established remains not fully understood. Here we investigate the DNA methylation (5 mC) dynamics of SC lineage and the VC in tomato using whole-genome bisulfite sequencing. We find the asymmetric division of the microspore gives its two daughter cells differential methylome. Compared with the generative cell (GC), the VC is hypomethylated at CG sites while hypermethylated at CHG and CHH sites, with the majority of differentially methylation regions targeted to transposable elements (TEs). SCs have a nearly identical DNA methylome to the GC, suggesting that the methylation landscape in SCs may be pre-established following the asymmetric division or inherited from the GC. The random forest classifier for predicting gene and TE expression shows that methylation within the gene body is a more powerful predictor for gene expression. Among all tested samples, gene and TE expression in the microspore may be more predictable by DNA methylation. Our results depict an intact DNA methylome landscape of SC lineage in higher plants, and reveal that the impact of DNA methylation on transcription is variant in different cell types.


Assuntos
Metilação de DNA , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Linhagem da Célula , Citosina/metabolismo , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Células Vegetais , Folhas de Planta/genética , Pólen/citologia
7.
Ann Bot ; 127(5): 681-695, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33598697

RESUMO

BACKGROUND AND AIMS: Extant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution. METHODS: DNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum. KEY RESULTS: On a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes. CONCLUSIONS: The first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.


Assuntos
Equisetum , Traqueófitas , Equisetum/genética , Evolução Molecular , Fósseis , Tamanho do Genoma , Filogenia
8.
Environ Sci Technol ; 55(12): 8223-8235, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032398

RESUMO

Many bivalve mollusks display remarkable sex differentiation of gonadal accumulation of manganese (Mn), but the underlying processes responsible for such differences have seldom been explored. In this study, the accumulation of Mn in male and female gonads during the reproductive cycle of oysters was first examined, and the distributions of Mn in oocytes and sperm cells at different developmental stages were imaged by the nanoscale secondary ion mass spectrometry (NanoSIMS) at the subcellular level. We found that the distribution and accumulation of Mn during oogenesis were closely associated with the formation and translocation of cortical granules. This is the first time that the enrichment of Mn was directly visualized in cortical granules, which was identified as the major storage site of Mn in oocytes of oysters. Yolk granules were revealed as another storage pool of Mn in oyster oocytes with lower accumulation. In contrast, Mn was mainly distributed in the nucleus of sperm cells with accumulation levels much lower than those in cortical and yolk granules of oocytes. These results demonstrated great differences of the subcellular localization and accumulation capacity of Mn between oocytes and sperm cells in oysters, implying the sex differentiation in susceptibility of reproductive response to Mn stress. Our study also highlights the importance of gender difference in future biomonitoring and ecotoxicological studies of Mn in marine bivalves.


Assuntos
Manganês , Ostreidae , Animais , Bioacumulação , Feminino , Gametogênese , Masculino , Espectrometria de Massa de Íon Secundário
9.
Anal Bioanal Chem ; 413(23): 5821-5834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34355252

RESUMO

Determining the presence of sperm cells on an item or swab is often a crucial component of sexual offence investigation. However, traditional histological staining techniques used for the morphological identification of spermatozoa lack both specificity and sensitivity, making analysis a complex and time-consuming process. New methods for the detection of sperm cells based on aptamer recognition may be able to overcome these issues. In this work, we present the selection of ssDNA aptamers against human sperm cells using Cell-SELEX and massively parallel sequencing technologies. A total of 14 rounds of selection were performed following a modified Cell-SELEX protocol, which included additional steps for the isolation of spermatozoa from seminal fluid. Massively parallel sequencing using the Illumina Miseq platform was conducted on enriched aptamer pools to elucidate the structure of potential binders. A custom bioinformatics pipeline was also developed using Galaxy for the automated processing of sequencing datasets. This data revealed several promising aptamer candidates, which were shown to selectively bind sperm cells through both microscale thermophoresis and enzyme-linked oligonucleotide assays. These aptamers have the potential to increase the efficiency of sexual offence casework by facilitating sperm detection.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espermatozoides/metabolismo , Sequência de Bases , Humanos , Limite de Detecção , Masculino , Técnica de Seleção de Aptâmeros/métodos
10.
Reprod Domest Anim ; 56(8): 1059-1065, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33966306

RESUMO

Laparoscopic artificial insemination technique (LAI) is described to overcome reduced fertility problems in sheep artificial insemination (AI) programmes with frozen semen. Later on, this technology was modified for endangered non-domestic cats to deposit low quality or reduced number of sperm cells hardly obtained by electro-ejaculation into the oviduct. This technique by passes the complex structure of cervix and efficiently transfers the sperm cells to the point of fertilization. In recent years, rabbits are becoming popular transgenic animal models producing various therapeutic and commercial products, as well as being experimental animals for disease models. The worldwide transportation of frozen semen and re-establishment of transgenic lines using AI technology has become a common practice. Therefore, this study was designed to describe a laparoscopic intrauterine insemination technique, which might assist in conceiving the animals with limited number of sperm cells. The female rabbits were laparoscopically (n = 22) or vaginally (n = 13) inseminated with frozen-thawed semen samples containing approximately 10 × 106 motile sperm. The laparoscopic insemination technique provided higher pregnancy rate (45.5%) than vaginal insemination technique (7.7%) (p < .05). In conclusion, the described laparoscopic AI might be a new alternative technique, thus enabling limited or low-quality frozen sperm samples to establish pregnancy in rabbits.


Assuntos
Inseminação Artificial/veterinária , Laparoscopia/veterinária , Coelhos , Animais , Criopreservação/veterinária , Feminino , Fertilidade , Inseminação Artificial/métodos , Laparoscopia/métodos , Masculino , Gravidez , Taxa de Gravidez , Preservação do Sêmen/veterinária
11.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576131

RESUMO

The cyclical proliferation of the wild fossorial rodent Arvicola terrestris scherman (ATS) is critical in mid-mountain ecosystems of several European countries. Our goal is to develop an immunocontraceptive vaccine to control their fertility, as a sustainable alternative to chemical poisons currently used. Indeed, these chemicals cause the death of ATS predators and animals sharing their ecosystem, and current laws progressively limit their use, making the development of a targeted vaccination strategy an interesting and efficient alternative. In order to identify species-specific sperm antigens, male and female ATS received subcutaneous injections of whole ATS spermatozoa to elicit an immune response. The analysis of the immune sera led to the identification of 120 immunogenic proteins of sperm cells. Of these, 15 were strictly sperm-specific and located in different regions of the male gamete. Some of these antigens are proteins involved in molecular events essential to the reproductive process, such as sperm-egg interaction, acrosomal reaction, or sperm motility. This approach not only identified a panel of immunogenic proteins from ATS sperm cells, but also demonstrated that some of these proteins trigger an immune response in both male and female ATS. These spermatic antigens are good candidates for the development of a contraceptive vaccine.


Assuntos
Antígenos/metabolismo , Arvicolinae/imunologia , Anticoncepcionais , Espermatozoides/imunologia , Animais , Anticorpos/sangue , Feminino , Ontologia Genética , Imunidade , Imunização , Masculino , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteômica , Especificidade da Espécie
12.
Cryobiology ; 96: 61-67, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777332

RESUMO

The antioxidant and cryoprotective efficiencies of a 3,5-di-tert-butyl-4-hydroxyphenyl)methylenediphosphonic acid (MDPA) differ significantly for sperm cells of various species of sturgeon fish (Russian sturgeon, beluga and Stellate sturgeon). The ability of phosphorus-containing phenol MDPA to decrease the level of lipid peroxidation of sperm, beneficial effect on the activity indicators of the sperm of native sturgeon and of the defrosted one after deep freezing as well as on the fertility of sperm cells was shown.


Assuntos
Criopreservação , Preservação do Sêmen , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Humanos , Masculino , Fenol , Fenóis/farmacologia , Fósforo , Federação Russa , Motilidade dos Espermatozoides , Espermatozoides
13.
Andrologia ; 52(2): e13465, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31693215

RESUMO

Phospholipase A2 (PLA2 ) is involved in eicosanoid release, and F2 -isoprostanes (F2 -IsoPs), as free radical-generated eicosanoids released by PLA2 , are indicators of oxidative stress in different human conditions. This study investigated the interplay between cytosolic PLA2 (cPLA2 ), F2 -IsoPs and sperm features in male infertility, when the involvement of oxidative stress has been reported. Semen evaluation was performed following WHO guidelines, sperm ultrastructure was detected by transmission electron microscopy indicating a fertility index, and the percentages of sperm immaturity, apoptosis and necrosis. In sperm cells and seminal plasma, cPLA2 levels were determined by immunological method, whereas F2 -IsoPs by mass spectrometry. Sperm concentration, morphology, vitality and fertility index values were significantly lower in infertile groups compared with fertile men. An increase in sperm apoptosis and necrosis (p < .01), apoptosis (p < .01) and immaturity (p < .001) was detected in leucocytospermia, idiopathic infertility and varicocele, respectively. Seminal cPLA2 showed the highest value in varicocele group (p < .05), whereas seminal F2 -IsoPs increased in varicocele (p < .001) and leucocytospermia (p < .05) groups. In the whole population, F2 -IsoP and cPLA2 levels were positively correlated (p < .05). On the contrary, F2 -IsoPs and cPLA2 were not significantly different when investigated in sperm cells. Our data indicate that fatty acid oxidation/metabolism plays a role in different male reproductive pathological conditions.


Assuntos
F2-Isoprostanos/metabolismo , Infertilidade Masculina/enzimologia , Fosfolipases A2 Citosólicas/metabolismo , Análise do Sêmen , Varicocele/enzimologia , Adulto , Estudos de Casos e Controles , Humanos , Masculino
14.
Urologiia ; (4): 104-110, 2020 Sep.
Artigo em Russo | MEDLINE | ID: mdl-32897023

RESUMO

A new coronavirus infection caused by SARS-CoV-2 was first identified in December 2019. It has spread quickly and caused a global pandemic. Analysis of demographic factors reveals a disproportionately large number of men with severe forms of the disease. Moreover, mortality rate is also higher in men. The currently available data regarding potential risks to the male reproductive system, including pathophysiological basics, detection of viral RNA in the reproductive tract, risk of orchitis, hypogonadism, possible influence of oxidative stress, etc. are described in the review.


Assuntos
Infecções por Coronavirus/complicações , Fertilidade , Infertilidade Masculina/virologia , Pneumonia Viral/complicações , Betacoronavirus , COVID-19 , Humanos , Masculino , Pandemias , SARS-CoV-2
15.
J Appl Microbiol ; 126(3): 796-810, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30472814

RESUMO

AIMS: To examine the antioxidant activity of Bacterioruberin (Bctr)-rich extracts isolated from a hyperpigmented, genetically modified Haloferax volcanii strain (HVLON3) and to investigate the effect on cold-sensitive ram sperm cells. METHODS AND RESULTS: The strain HVLON3 produces higher Bctr amounts than most haloarchaea (220 ± 13 mg g-1 DW). HVLON3-Bctr extract has higher antioxidant activity than ß-carotene (threefold) as evaluated using 2,2 diphenyl-1-picrylhydrazyl combined with Electron Paramagnetic Resonance analysis (EC50 4·5 × 10-5  mol l-1 vs 13·9 × 10-5  mol l-1 respectively). Different concentrations of HVLON3-Bctr extracts were assayed on ram sperm after freezing/thawing and physiologically relevant parameters were examined. Extracts containing 7 and 20 µmol l-1 Bctr significantly improved cell viability (P < 0·0001), total and progressive motility (P < 0·0001) and sperm velocities (P = 0·0172 for curvilinear velocity VCL, P = 0·0268 for average path velocity VAP and P = 0·0181 for straight line velocity VSL) and did not affect other parameters evaluated. CONCLUSIONS: HVLON3 is an excellent source of natural microbial C50 carotenoids with applicability in Biotechnology, Biomedical and Veterinary fields. HVLON3 Bctr extract improves the quality of cryopreserved ram sperm cells and could be applied to increase insemination yields. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides an insight on the bioactive properties of a bioproduct derived from haloarchaea (carotenoids) which are so far underexploited.


Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Haloferax volcanii/química , Espermatozoides/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Carotenoides/metabolismo , Criopreservação , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Masculino , Ovinos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/citologia
16.
Toxicol Appl Pharmacol ; 346: 19-27, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540303

RESUMO

Methyl parathion (Me-Pa) is an oxidizing organophosphate (OP) pesticide that generates reactive oxygen species (ROS) through its biotransformation. Some studies have also suggested that OP pesticides have the capacity to alkylate biomolecules, including DNA. In general, DNA methylation in gene promoters represses transcription. NRF2 is a key transcription factor that regulates the expression of antioxidant, metabolic and detoxifying genes through the antioxidant response element (ARE) situated in promoters of regulated genes. Furthermore, DNA repair genes, including 8-oxoguanine DNA glycosidase (OGG1), have been proposed as NRF2 target genes. Me-Pa exposure produces poor semen quality, genetic and oxidative damage in sperm cells, and reduced fertility. However, the Me-Pa effects on the methylation status and the expression of antioxidant (Nrf2) or DNA repair (Ogg1) genes in male germ cells have not been investigated. Therefore, mice were exposed to Me-Pa to evaluate the global (%5-mC) and specific methylation of Nrf2 and Ogg1 genes using pyrosequencing, gene expression, and total protein carbonylation in male germ cells. The results showed that Me-Pa significantly decreased the global DNA methylation pattern and significantly increased the methylation of two CpG sites within Ogg1 promoter and one CpG site within Nrf2 promoter. In addition, Ogg1 or Nrf2 expression did not change after Me-Pa exposure despite the oxidative damage produced. Altogether, our data suggest that Me-Pa toxicity alters Ogg1 and Nrf2 promoter methylation in male germ cells that may be modulating their gene expression.


Assuntos
DNA Glicosilases/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Metil Paration/efeitos adversos , Fator 2 Relacionado a NF-E2/genética , Testículo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Testículo/metabolismo
17.
Bioessays ; 38(8): 726-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27315018

RESUMO

Mature spermatozoa are permeable to foreign DNA and RNA molecules. Here I propose a model, whereby extrachromosomal genetic information, mostly encoded in the form of RNA in somatic cells, can cross the Weismann barrier and reach epididymal spermatozoa. LINE-1 retrotransposon-derived reverse transcriptase (RT) can play key roles in the process by expanding the RNA-encoded information. Retrotransposon-encoded RT is stored in mature gametes, is highly expressed in early embryos and undifferentiated cells, and becomes downregulated in differentiated cells. In turn, RT plays a role in developmental control, as its inhibition arrests developmental progression of early embryos with globally altered transcriptomic profiles. Thus, sperm cells act as recipients, and transgenerational vectors of somatically derived genetic information which they pass to the next generation with the potential to modify the fate of the developing embryos.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA/metabolismo , RNA/genética , Espermatozoides/enzimologia , Humanos , Masculino , Modelos Genéticos , RNA/metabolismo
18.
Plant J ; 85(5): 660-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26846354

RESUMO

In flowering plants, male germline fate is determined after asymmetric division of the haploid microspore. Daughter cells have distinct fates: the generative cell (GC) undergoes further mitosis to generate sperm cells (SCs), and the vegetative cell (VC) terminally differentiates. However, our understanding of the mechanisms underlying germline development remains limited. Histone variants and modifications define chromatin states, and contribute to establishing and maintaining cell identities by affecting gene expression. Here, we constructed a lily protein database, then extracted and detailed histone entries into a comprehensive lily histone database. We isolated large amounts of nuclei from VCs, GCs and SCs from lily, and profiled histone variants of all five histone families in all three cell types using proteomics approaches. We revealed 92 identities representing 32 histone variants: six for H1, 11 for H2A, eight for H2B, five for H3 and two for H4. Nine variants, including five H1, two H2B, one H3 and one H4 variant, specifically accumulated in GCs and SCs. We also detected H3 modification patterns in the three cell types. GCs and SCs had almost identical histone profiles and similar H3 modification patterns, which were significantly different from those of VCs. Our study also revealed the presence of multiple isoforms, and differential expression patterns between isoforms of a variant. The results suggest that differential histone programs between the germline and companion VCs may be established following the asymmetric division, and are important for identity establishment and differentiation of the male germline as well as the VC.


Assuntos
Histonas/metabolismo , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Acetilação , Sequência de Aminoácidos , Western Blotting , Células Cultivadas , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Histonas/classificação , Histonas/genética , Lilium/citologia , Lilium/genética , Metilação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Pólen/citologia , Pólen/genética , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
19.
Plant J ; 83(1): 177-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25892182

RESUMO

The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.


Assuntos
Cromatina/metabolismo , Pólen/fisiologia , Cromatina/genética , Montagem e Desmontagem da Cromatina , Flores/fisiologia , Haploidia , Histonas/metabolismo , Pólen/crescimento & desenvolvimento
20.
Dent Mater J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960669

RESUMO

Orthodontic brackets and archwires placed intraorally are subject to corrosion, leading to the release of cytotoxic metal ions. The aim of this study was to determine whether the use of orthodontic NiTi archwires increases systemic Ni levels and cause alterations on the DNA of cells unrelated to the oral environment such as lymphocytes and sperm cells. Human urine, semen and blood samples were collected before (baseline) sham placement of orthodontic archwires and 15 and 30 days after placement. Lymphocytes and sperm cells cells were evaluated by comet assay. Ni concentration levels in urine increased significantly between baseline and 15 days (p<0.01) and 15 and 30 days of exposure (p<0.01). Progressive decrease in sperm viability and motility was observed between the sampling periods. Lymphocytes and sperm cells showed DNA fragmentation. The increase in systemic concentration of nickel induced structural damage in the DNA of lymphocytes and human sperm cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA