Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848678

RESUMO

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Assuntos
Homeostase , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneração , Células-Tronco , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citologia , Diferenciação Celular , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Análise de Célula Única , Masculino
2.
Mol Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090849

RESUMO

Glioblastoma (GB) is the most common and fatal type of primary malignant brain tumor for which effective therapeutics are still lacking. GB stem cells, with tumor-initiating and self-renewal capacity, are mostly responsible for GB malignancy, representing a crucial target for therapies. The TP73 gene, which is highly expressed in GB, gives rise to the TAp73 isoform, a pleiotropic protein that regulates neural stem cell biology; however, its role in cancer has been highly controversial. We inactivated TP73 in human GB stem cells and revealed that TAp73 is required for their stemness potential, acting as a regulator of the transcriptional stemness signatures, highlighting TAp73 as a possible therapeutic target. As proof of concept, we identified a novel natural compound with TAp73-inhibitory capacity, which was highly effective against GB stem cells. The treatment reduced GB stem cell-invasion capacity and stem features, at least in part by TAp73 repression. Our data are consistent with a novel paradigm in which hijacking of p73-regulated neurodevelopmental programs, including neural stemness, might sustain tumor progression, pointing out TAp73 as a therapeutic strategy for GB.

3.
Cell Mol Gastroenterol Hepatol ; 16(5): 757-782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482243

RESUMO

BACKGROUND & AIMS: Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS: Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS: BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS: This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neoplasias Colorretais/patologia , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
4.
Genes (Basel) ; 14(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37107648

RESUMO

The Coatomer protein complex Zeta 1 (COPZ1) has been reported to play an essential role in maintaining the survival of some types of tumors. In this study, we sought to explore the molecular characteristics of COPZ1 and its clinical prognostic value through a pan-cancers bioinformatic analysis. We found that COPZ1 was extremely prevalent in a variety of cancer types, and high expression of COPZ1 was linked to poor overall survival in many cancers, while low expression in LAML and PADC was correlated with tumorigenesis. Besides, the CRISPR Achilles' knockout analysis revealed that COPZ1 was vital for many tumor cells' survival. We further demonstrated that the high expression level of COPZ1 in tumors was regulated in multi-aspects, including abnormal CNV, DNA-methylation, transcription factor and microRNAs. As for the functional exploration of COPZ1, we found a positive relationship between COPZ1's expression and stemness and hypoxia signature, especially the contribution of COPZ1 on EMT ability in SARC. GSEA analysis revealed that COPZ1 was associated with many immune response pathways. Further investigation demonstrated that COPZ expression was negatively correlated with immune score and stromal score, and low expression of COPZ1 has been associated to more antitumor immune cell infiltration and pro-inflammatory cytokines. The further analysis of COPZ1 expression and anti-inflammatory M2 cells showed a consistent result. Finally, we verified the expression of COPZ1 in HCC cells, and proved its ability of sustaining tumor growth and invasion with biological experiments. Our study provides a multi-dimensional pan-cancer analysis of COPZ and demonstrates that COPZ1 can serve as both a prospective target for the treatment of cancer and a prognostic marker for a variety of cancer types.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinogênese , Transformação Celular Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA