Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Lasers Med Sci ; 37(2): 1181-1191, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34432186

RESUMO

The development of anxiety and depression due to chronic exposure to noise stress has remained as an unsolved health problem so far. Despite the studies suggesting the neuroenhancement effects of transcranial photobiomodulation (tPBM) and housing in an enriched environment (EE), the combined effects of these treatments have not been elucidated yet. Also, there is no available data on the relationship between the application of tPBM and hippocampal brain-derived neurotrophic factor (BDNF) expression in animal models of stress. The present study aims to investigate the application of the tPBM and EE (alone or in combination) on depressive- and anxiety-like behaviors in a mice model of noise stress. Mice were divided into five groups: control, noise, noise + EE, noise + tPBM, and noise + EE + tPBM. Except for the control group, other groups were subjected to 110 dB SPL white noise for 4 h/day for 14 consecutive days and received their respective treatments. Forced Swimming Test (FST) was used to evaluate depressive-like behaviors. Elevated Plus Maze (EPM) and Open Field Test (OFT) were used to evaluate anxiety-like behaviors. BDNF, tyrosine receptor kinase B (TrkB), and cAMP response element-binding (CREB) protein levels in the hippocampus were determined by the Western blot method, and also serum corticosterone levels were assessed using an ELISA kit. Exposure to noise stress significantly elevated serum corticosterone level; downregulated hippocampal BDNF, TrkB, and CREB protein expressions; and resulted in depressive- and anxiety-like behaviors. While, the application of tPBM (810 nm wavelength, 8 J/cm2 fluence, 10 Hz pulsed wave mode), housing in EE, and their combination lowered corticosterone levels, upregulated the BDNF/TrkB/CREB signaling pathway in the hippocampus, and improved behavioral outcomes in noise stress subjected mice. Our finding revealed the improving effects of tPBM and EE on depressive and anxiety-like behaviors induced by noise stress, possibly by augmenting the BDNF/TrkB/CREB signaling pathway.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Terapia com Luz de Baixa Intensidade , Estresse Psicológico , Animais , Ansiedade/etiologia , Ansiedade/terapia , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Terapia Combinada , Corticosterona , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/etiologia , Depressão/terapia , Modelos Animais de Doenças , Hipocampo , Camundongos , Ruído , Estresse Psicológico/etiologia , Estresse Psicológico/terapia
2.
Lasers Surg Med ; 52(9): 807-813, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32173886

RESUMO

BACKGROUND AND OBJECTIVES: In our previous proof-of-principle study, transcranial photobiomodulation (tPBM) with 1,064-nm laser was reported to significantly increase concentration changes of oxygenated hemoglobin (∆[HbO]) and oxidized-state cytochrome c oxidase (∆[oxi-CCO]) in the human brain. This paper further investigated (i) its validity in two different subsets of young human subjects at two study sites over a period of 3 years and (ii) age-related effects of tPBM by comparing sham-controlled increases of ∆[HbO] and ∆[oxi-CCO] between young and older adults. STUDY DESIGN/MATERIALS AND METHODS: We measured sham-controlled ∆[HbO] and ∆[oxi-CCO] using broadband near-infrared spectroscopy (bb-NIRS) in 15 young (26.7 ± 2.7 years of age) and 5 older (68.2 ± 4.8 years of age) healthy normal subjects before, during, and after right-forehead tPBM/sham stimulation with 1,064-nm laser. Student t tests were used to test statistical differences in tPBM-induced ∆[HbO] and ∆[oxi-CCO] (i) between the 15 young subjects and those of 11 reported previously and (ii) between the two age groups measured in this study. RESULTS: Statistical analysis showed that no significant difference existed in ∆[HbO] and ∆[oxi-CCO] during and post tPBM between the two subsets of young subjects at two study sites over a period of 3 years. Furthermore, the two age groups showed statistically identical net increases in sham-controlled ∆[HbO] and ∆[oxi-CCO]. CONCLUSIONS: This study provided strong evidence to validate/confirm our previous findings that tPBM with 1,064-nm laser enables to increase cerebral ∆[HbO] and ∆[oxi-CCO] in the human brain, as measured by bb-NIRS. Overall, it demonstrated the robust reproducibility of tPBM being able to improve cerebral hemodynamics and metabolism of the human brain in vivo in both young and older adults. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Idoso , Pré-Escolar , Hemodinâmica , Humanos , Lasers , Reprodutibilidade dos Testes
3.
Front Neurol ; 15: 1221193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737349

RESUMO

Background: Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective: To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method: We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results: The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion: These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.

4.
Front Hum Neurosci ; 18: 1385427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562225

RESUMO

Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.

5.
Front Neurosci ; 18: 1368172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817913

RESUMO

Introduction: Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technique that improves human cognition. The effects of tPBM of the right forehead on neurophysiological activity have been previously investigated using EEG in sensor space. However, the spatial resolution of these studies is limited. Magnetoencephalography (MEG) is known to facilitate a higher spatial resolution of brain source images. This study aimed to image post-tPBM effects in brain space based on both MEG and EEG measurements across the entire human brain. Methods: MEG and EEG scans were concurrently acquired for 6 min before and after 8-min of tPBM delivered using a 1,064-nm laser on the right forehead of 25 healthy participants. Group-level changes in both the MEG and EEG power spectral density with respect to the baseline (pre-tPBM) were quantified and averaged within each frequency band in the sensor space. Constrained modeling was used to generate MEG and EEG source images of post-tPBM, followed by cluster-based permutation analysis for family wise error correction (p < 0.05). Results: The 8-min tPBM enabled significant increases in alpha (8-12 Hz) and beta (13-30 Hz) powers across multiple cortical regions, as confirmed by MEG and EEG source images. Moreover, tPBM-enhanced oscillations in the beta band were located not only near the stimulation site but also in remote cerebral regions, including the frontal, parietal, and occipital regions, particularly on the ipsilateral side. Discussion: MEG and EEG results shown in this study demonstrated that tPBM modulates neurophysiological activity locally and in distant cortical areas. The EEG topographies reported in this study were consistent with previous observations. This study is the first to present MEG and EEG evidence of the electrophysiological effects of tPBM in the brain space, supporting the potential utility of tPBM in treating neurological diseases through the modulation of brain oscillations.

6.
Bioengineering (Basel) ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760145

RESUMO

Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.

7.
Front Neurosci ; 17: 1247290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916179

RESUMO

Introduction: The quantification of electroencephalography (EEG) microstates is an effective method for analyzing synchronous neural firing and assessing the temporal dynamics of the resting state of the human brain. Transcranial photobiomodulation (tPBM) is a safe and effective modality to improve human cognition. However, it is unclear how prefrontal tPBM neuromodulates EEG microstates both temporally and spectrally. Methods: 64-channel EEG was recorded from 45 healthy subjects in both 8-min active and sham tPBM sessions, using a 1064-nm laser applied to the right forehead of the subjects. After EEG data preprocessing, time-domain EEG microstate analysis was performed to obtain four microstate classes for both tPBM and sham sessions throughout the pre-, during-, and post-stimulation periods, followed by extraction of the respective microstate parameters. Moreover, frequency-domain analysis was performed by combining multivariate empirical mode decomposition with the Hilbert-Huang transform. Results: Statistical analyses revealed that tPBM resulted in (1) a significant increase in the occurrence of microstates A and D and a significant decrease in the contribution of microstate C, (2) a substantial increase in the transition probabilities between microstates A and D, and (3) a substantial increase in the alpha power of microstate D. Discussion: These findings confirm the neurophysiological effects of tPBM on EEG microstates of the resting brain, particularly in class D, which represents brain activation across the frontal and parietal regions. This study helps to better understand tPBM-induced dynamic alterations in EEG microstates that may be linked to the tPBM mechanism of action for the enhancement of human cognition.

8.
Front Psychiatry ; 14: 1267415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38356614

RESUMO

Background: Depression is a common mental illness that is widely recognized by its lack of pleasure, fatigue, low mood, and, in severe cases, even suicidal tendencies. Photobiomodulation (PBM) is a non-invasive neuromodulation technique that could treat patients with mood disorders such as depression. Methods: A systematic search of ten databases, including randomized controlled trials (RCTs) for depression, was conducted from the time of library construction to September 25, 2023. The primary outcome was depression. The secondary outcome was sleep. Meta-analysis was performed using RevMan (version 5.4) and Stata (version 14.0). Subgroup analyses were performed to identify sources of heterogeneity. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results: Three thousand two hundred and sixty-five studies were retrieved from the database and screened for inclusion in eleven trials. The forest plot results demonstrated that PBM alleviated depression (SMD = -0.55, 95% CI [-0.75, -0.35], I2 = 46%). But it is not statistically significant for patients' sleep outcomes (SMD = -0.82, 95% CI [-2.41, 0.77], I2 = 0%, p > 0.05). Subgroup analysis showed that s-PBM was superior to t-PBM in relieving symptoms of depression. The best improvement for t-PBM was achieved using a wavelength of 823 nm, fluence of 10-100 J/cm2, irradiance of 50-100 mW/cm2, irradiance time of 30 min, treatment frequency < 3/week, and number of treatments >15 times. The best improvement for s-PBM was achieved using a wavelength of 808 nm, fluence ≤1 J/cm2, irradiance of 50-100 mW/cm2, irradiance time ≤ 5 min, treatment frequency ≥ 3/week, number of treatments >15 times. All results had evidence quality that was either moderate or very low, and there was no bias in publication. Conclusion: We conclude that PBM is effective in reducing depression symptoms in patients. However, the current number of studies is small, and further studies are needed to extend the current analysis results. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, CRD42023444677.

9.
Healthcare (Basel) ; 11(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37510458

RESUMO

BACKGROUND: Alzheimer's disease's (AD) prevalence is projected to increase as the population ages and current treatments are minimally effective. Transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light penetrates into the cerebral cortex, stimulates the mitochondrial respiratory chain, and increases cerebral blood flow. Preliminary data suggests t-PBM may be efficacious in improving cognition in people with early AD and amnestic mild cognitive impairment (aMCI). METHODS: In this randomized, double-blind, placebo-controlled study with aMCI and early AD participants, we will test the efficacy, safety, and impact on cognition of 24 sessions of t-PBM delivered over 8 weeks. Brain mechanisms of t-PBM in this population will be explored by testing whether the baseline tau burden (measured with 18F-MK6240), or changes in mitochondrial function over 8 weeks (assessed with 31P-MRSI), moderates the changes observed in cognitive functions after t-PBM therapy. We will also use changes in the fMRI Blood-Oxygenation-Level-Dependent (BOLD) signal after a single treatment to demonstrate t-PBM-dependent increases in prefrontal cortex blood flow. CONCLUSION: This study will test whether t-PBM, a low-cost, accessible, and user-friendly intervention, has the potential to improve cognition and function in an aMCI and early AD population.

10.
Neurophotonics ; 9(1): 015006, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35345494

RESUMO

Significance: Transcranial photobiomodulation (tPBM) at 808 nm attenuates pentylenetetrazole (PTZ)-induced seizures and convulsive status epilepticus (CSE) in peripubertal rats by protecting neurons from injury and parvalbumin-positive interneurons from apoptosis, and preserving the integrity of perisomatic inhibitory networks. However, the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in epileptic rat brains are unknown. Thus, further study to unveil these aspects is needed for understanding the phenomena of tPBM on pediatric CSE prevention. Aim: To evaluate the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in peripubertal rat hippocampus with PTZ-induced seizures and SE. Approach: An 808-nm diode laser was applied transcranially to peripubertal rats prior to PTZ injection. Immunofluorescence staining of neuron-specific enolase (NSE) was used as a marker of neuroinflammation, glial fibrillary acid protein (GFAP) for astrogliosis, ionized calcium-binding adapter molecule 1 (Iba-1) for microgliosis, and mitochondrial cytochrome c oxidase subunit 1 (MT-CO1) for confirming the involvement of cytochrome c oxidase (CCO). Results: tPBM significantly reduced NSE immunoreactivity in CA3 in PTZ-treated rats, GFAP immunoreactivity in CA1, and Iba-1 immunoreactivity in CA3. Enhancement of hippocampal MT-CO1 reflected that tPBM acted in CCO-dependent manner. Conclusions: tPBM (808) attenuated PTZ-induced seizures and SE by suppressing neuroinflammation, astrogliosis, and microgliosis in peripubertal rats.

11.
J Neural Eng ; 19(6)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317341

RESUMO

Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.


Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos , Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA