Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741267

RESUMO

The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.


Assuntos
Multilinguismo , Lobo Parietal , Fala , Lobo Temporal , Estimulação Magnética Transcraniana , Humanos , Masculino , Lobo Temporal/fisiologia , Feminino , Adulto Jovem , Adulto , Lobo Parietal/fisiologia , Fala/fisiologia , Sinais (Psicologia)
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517175

RESUMO

Intermittent theta-burst stimulation (iTBS) is emerging as a noninvasive therapeutic strategy for Alzheimer's disease (AD). Recent advances highlighted a new accelerated iTBS (aiTBS) protocol, consisting of multiple sessions per day and higher overall pulse doses, in brain modulation. To examine the possibility of applying the aiTBS in treating AD patients, we enrolled 45 patients in AD at early clinical stages, and they were randomly assigned to either receive real or sham aiTBS. Neuropsychological scores were evaluated before and after treatment. Moreover, we detected cortical excitability and oscillatory activity changes in AD, by the single-pulse TMS in combination with EEG (TMS-EEG). Real stimulation showed markedly better performances in the group average of Auditory Verbal Learning Test scores compared to baseline. TMS-EEG revealed that aiTBS has reinforced this memory-related cortical mechanism by increasing cortical excitability and beta oscillatory activity underlying TMS target. We also found an enhancement of local natural frequency after aiTBS treatment. The novel findings implicated that high-dose aiTBS targeting left DLPFC is rapid-acting, safe, and tolerable in AD patients. Furthermore, TMS-related increase of specific neural oscillation elucidates the mechanisms of the AD cognitive impairment ameliorated by aiTBS.


Assuntos
Doença de Alzheimer , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Doença de Alzheimer/terapia , Córtex Pré-Frontal/fisiologia , Encéfalo , Córtex Pré-Frontal Dorsolateral
3.
Proc Natl Acad Sci U S A ; 119(21): e2113778119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594397

RESUMO

Mild cognitive impairment (MCI) during aging is often a harbinger of Alzheimer's disease, and, therefore, early intervention to preserve cognitive abilities before the MCI symptoms become medically refractory is particularly critical. Functional MRI­guided transcranial magnetic stimulation is a promising approach for modulating hippocampal functional connectivity and enhancing memory in healthy adults. Here, we extend these previous findings to individuals with MCI and leverage theta burst stimulation (TBS) and white matter tractography derived from diffusion-weighted MRI to target the hippocampus. Our preliminary findings suggested that TBS could be used to improve associative memory performance and increase resting-state functional connectivity of the hippocampus and other brain regions, including the occipital fusiform, frontal orbital cortex, putamen, posterior parahippocampal gyrus, and temporal pole, along the inferior longitudinal fasciculus in MCI. Although the sample size is small, these results shed light on how TBS propagates from the superficial cortex around the parietal lobe to the hippocampus.


Assuntos
Disfunção Cognitiva , Memória , Substância Branca , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/terapia , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Estimulação Magnética Transcraniana/métodos , Substância Branca/diagnóstico por imagem
4.
J Physiol ; 602(5): 933-948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358314

RESUMO

Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia
5.
J Comput Neurosci ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120822

RESUMO

Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) with unknown underlying mechanisms and highly variable responses across subjects. To investigate these issues, we developed a simple computational model. Our model consisted of two neurons linked by an excitatory synapse that incorporates two mechanisms: short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). We applied a variable-amplitude current through I-clamp with a TBS time pattern to the pre- and post-synaptic neurons, simulating synaptic plasticity. We analyzed the results and provided an explanation for the effects of TBS, as well as the variability of responses to it. Our findings suggest that the interplay of STP and STDP mechanisms determines the direction of plasticity, which selectively affects synapses in extended neurons and underlies functional effects. Our model describes how the timing, number, and intensity of pulses delivered to neurons during rTMS contribute to induced plasticity. This not only successfully explains the different effects of intermittent TBS (iTBS) and continuous TBS (cTBS), but also predicts the results of other protocols such as 10 Hz rTMS. We propose that the variability in responses to TBS can be attributed to the variable span of neuronal thresholds across individuals and sessions. Our model suggests a biologically plausible mechanism for the diverse responses to TBS protocols and aligns with experimental data on iTBS and cTBS outcomes. This model could potentially aid in improving TBS and rTMS protocols and customizing treatments for patients, brain areas, and brain disorders.

6.
BMC Neurol ; 24(1): 52, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297193

RESUMO

Various post-stroke dysfunctions often result in poor long-term outcomes for stroke survivors, but the effect of conventional treatments is limited. In recent years, lots of studies have confirmed the effect of repetitive transcranial magnetic stimulation (rTMS) in stroke rehabilitation. As a new pattern of rTMS, theta burst stimulation (TBS) was proved recently to yield more pronounced and long-lasting after-effects than the conventional pattern at a shorter stimulation duration. To explore the role of TBS in stroke rehabilitation, this review summarizes the existing evidence from all the randomized controlled trials (RCTs) so far on the efficacy of TBS applied to different post-stroke dysfunctions, including cognitive impairment, visuospatial neglect, aphasia, dysphagia, spasticity, and motor dysfunction. Overall, TBS promotes the progress of stroke rehabilitation and may serve as a preferable alternative to traditional rTMS. However, it's hard to recommend a specific paradigm of TBS due to the limited number of current studies and their heterogeneity. Further high-quality clinical RCTs are needed to determine the optimal technical settings and intervention time in stroke survivors.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estimulação Magnética Transcraniana , Acidente Vascular Cerebral/complicações , Fatores de Tempo
7.
CNS Spectr ; : 1-10, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769839

RESUMO

OBJECTIVE: Treatment and management for difficult-to-treat depression are challenging, especially in a subset of patients who are at high risk for relapse and recurrence. The conditions that represent this subset are recurrent depressive disorder (RDD) and bipolar disorder (BD). In this context, we aimed to examine the effectiveness of maintenance transcranial magnetic stimulation (TMS) on a real-world clinical basis by retrospectively extracting data from the TMS registry data in Tokyo, Japan. METHODS: Data on patients diagnosed with treatment-resistant RDD and BD who received maintenance intermittent theta burst stimulation (iTBS) weekly after successful treatment with acute iTBS between March 2020 and October 2023 were extracted from the registry. RESULTS: All patients (21 cases: 10 cases with RDD and 11 cases with BD) could sustain response, and 19 of them further maintained remission. In this study, maintenance iTBS did not exacerbate depressive symptoms in any of the cases, but may rather have the effect of stabilizing the mental condition and preventing recurrence. CONCLUSIONS: This case series is of great clinical significance because it is the first study to report on the effectiveness of maintenance iTBS for RDD and BD, with a follow-up of more than 2 years. Further validation with a randomized controlled trial design with a larger sample size is warranted.

8.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 87-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710135

RESUMO

Specialized psychotherapeutic treatments like dialectical behavioral therapy (DBT) are recommended as first treatment for borderline personality disorder (BPD). In recent years, studies have emerged that focus on repetitive transcranial magnetic stimulation (rTMS) in BPD. Both have independently demonstrated efficacy in the treatment of BPD. Intermitted theta burst stimulation (iTBS), a modified design of rTMS, is thought to increase the excitability of neurons and could be a supplement to psychotherapy in addition to being a standalone treatment. However, no studies to date have investigated the combination of DBT and rTMS/iTBS. This study protocol describes the methods and design of a randomized, single-blinded, sham-controlled clinical pilot study in which BPD patients will be randomly assigned to either iTBS or sham during four consecutive weeks (20 sessions in total) in addition to standardized DBT treatment. The stimulation will focus on the unilateral stimulation of the left dorsolateral prefrontal cortex (DLPFC), which plays an important role in the control of impulsivity and risk-taking. Primary outcome is the difference in borderline symptomatology, while secondary target criteria are depressive symptoms, general functional level, impulsivity and self-compassion. Statistical analysis of therapy response will be conducted by Mixed Model Repeated Measurement using a 2 × 2-factorial between-subjects design with the between-subject factor stimulation (TMS vs. Sham) and the within-subject factor time (T0 vs. T1). Furthermore, structural magnetic resonance imaging (MRI) will be conducted and analyzed. The study will provide evidence and insight on whether iTBS has an enhancing effect as add-on to DBT in BPD.Trial registration: drks.de (DRKS00020413) registered 13/01/2020.


Assuntos
Transtorno da Personalidade Borderline , Estimulação Magnética Transcraniana , Humanos , Terapia Comportamental , Transtorno da Personalidade Borderline/terapia , Personalidade , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Método Simples-Cego , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Eur Arch Psychiatry Clin Neurosci ; 274(3): 697-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37470840

RESUMO

Theta burst stimulation (TBS) is approved and widely used in the treatment of treatment resistant-major depression. More recently, accelerated protocols delivering multiple treatments per day have been shown to be efficacious and potentially enhance outcomes compared to once daily protocols. Meanwhile, bilateral treatment protocols have also been increasingly tested to enhance outcomes. Here, we examined the efficacy and safety of accelerated bilateral TBS in major depressive disorder (MDD). In this open label pilot study, 25 patients with MDD (60%: women; mean age (SD): 45.24 (12.22)) resistant to at least one antidepressant, received bilateral TBS, consisting of 5 sequential bilateral intermittent TBS (iTBS) (600 pulses) and continuous TBS (cTBS) (600 pulses) treatments delivered to the left and right dorsolateral prefrontal cortex (DLPFC), respectively, daily for 5 days at 120% resting motor threshold. Outcome measures were post-treat treatment changes at day 5 and 2-weeks in Hamilton Depression Rating Scale (HDRS-17) scores and response (≥ 50% reduction from the baseline scores) and remission (≤ 7) rates. There was a significant reduction in HDRS scores at day 5 (p < 0.001) and 2-weeks post treatment (p < 0.001). The response rates increased from 20% at day 5 to 32% at 2-weeks post treatment suggesting delayed clinical effects. However, reduction in symptom scores between two post treatment endpoints was non-significant. 60% of patients could not tolerate the high intensity stimulation. No major adverse events occurred. Open label uncontrolled study with small sample size. These preliminary findings suggest that accelerated bilateral TBS may be clinically effective and safe for treatment resistant depression. Randomized sham-controlled trials are needed to establish the therapeutic role of accelerated bilateral TBS in depression.Trial registration: ClinicalTrials.gov, NCT10001858.


Assuntos
Transtorno Depressivo Maior , Feminino , Humanos , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Masculino , Adulto , Pessoa de Meia-Idade
10.
BMC Psychiatry ; 24(1): 28, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191370

RESUMO

BACKGROUND: Intermittent theta burst stimulation (iTBS), a novel form of repetitive transcranial magnetic stimulation (rTMS), can be administered in 1/10th of the time of standard rTMS (~ 3 min vs. 37.5 min) yet achieves similar outcomes in depression. The brief nature of the iTBS protocol allows for the administration of multiple iTBS sessions per day, thus reducing the overall course length to days rather than weeks. This study aims to compare the efficacy and tolerability of active versus sham iTBS using an accelerated regimen in patients with treatment-resistant depression (TRD). As a secondary objective, we aim to assess the safety, tolerability, and treatment response to open-label low-frequency right-sided (1 Hz) stimulation using an accelerated regimen in those who do not respond to the initial week of treatment. METHODS: Over three years, approximately 230 outpatients at the Centre for Addiction and Mental Health and University of British Columbia Hospital, meeting diagnostic criteria for unipolar MDD, will be recruited and randomized to a triple blind sham-controlled trial. Patients will receive five consecutive days of active or sham iTBS, administered eight times daily at 1-hour intervals, with each session delivering 600 pulses of iTBS. Those who have not achieved response by the week four follow-up visit will be offered a second course of treatment, regardless of whether they initially received active or sham stimulation. DISCUSSION: Broader implementation of conventional iTBS is limited by the logistical demands of the current standard course consisting of 4-6 weeks of daily treatment. If our proposed accelerated iTBS protocol enables patients to achieve remission more rapidly, this would offer major benefits in terms of cost and capacity as well as the time required to achieve clinical response. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04255784.


Assuntos
Comportamento Aditivo , Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Humanos , Transtorno Depressivo Maior/terapia , Estimulação Magnética Transcraniana , Depressão , Transtorno Depressivo Resistente a Tratamento/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Neurol Sci ; 45(3): 911-940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37882997

RESUMO

TBS (theta-burst stimulation) is a novel therapeutic approach in a wide range of neurological diseases. The present systematic review aims to identify the various protocols used in the last years, to assess study quality and to offer a general overview of the current state of the literature. The systematic review was conducted according to the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines. We applied the following inclusion criteria: (1) population over 18 years old with diagnosed neurological disorders, (2) patients treated with sessions of theta-burst stimulation, (3) randomized-controlled clinical trials, (4) articles in the English language, and (5) studies that report response and score reduction on a validated scale of the investigated disorder or remission rates. We included in the final analysis 56 randomized controlled trials focusing on different neurological pathologies (stroke, Parkinson`s disease, multiple sclerosis, tinnitus, dystonia, chronic pain, essential tremor and tic disorder), and we extracted data regarding study design, groups and comparators, sample sizes, type of coil, stimulation parameters (frequency, number of pulses, intensity, stimulation site etc.), number of sessions, follow-up, assessment through functional connectivity and neurological scales used. We observed a great interstudy heterogenicity that leads to a difficulty in drawing plain conclusions. TBS protocols have shown promising results in improving various symptoms in patients with neurological disorders, but larger and more coherent studies, using similar stimulation protocols and evaluation scales, are needed to establish guideline recommendations.


Assuntos
Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Adolescente , Estimulação Magnética Transcraniana/métodos , Projetos de Pesquisa
12.
Neurol Sci ; 45(5): 2107-2118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150130

RESUMO

BACKGROUND: Stroke is a significant global cause of mortality and morbidity, and post-stroke cognitive impairment (PSCI) affects up to half of stroke patients. Despite the availability of pharmacological and non-pharmacological interventions, there is a lack of definitive effective treatments for PSCI. Non-invasive brain stimulation, particularly intermittent theta burst stimulation (iTBS), has emerged as a promising therapy for the treatment of PSCI. OBJECTIVE: This systematic review and meta-analysis aimed to evaluate the efficacy and safety of iTBS in enhancing cognitive function among patients with PSCI. METHODS: A comprehensive search was conducted across multiple databases, including PubMed, Web of Science, Scopus, Cochrane Library, and CNKI, to identify relevant randomized controlled trials published before April 2023. The primary outcome measured changes in global cognitive scales, while the secondary outcomes focused on improvements in attention, orientation, visual-spatial perception, and activities of daily living. RESULTS: The meta-analysis encompassed six studies involving 325 patients. The results demonstrated that iTBS led to a significant improvement in global cognitive scales (SMD = 1.12, 95% CI = [0.59 to 1.65], P < 0.0001), attention (SMD = 0.48, 95% CI [0.13 to 0.82], P = 0.007), visual perception (SMD = 0.99, 95% CI [0.13 to 1.86], P = 0.02), and activities of daily living (SMD = 0.82, 95% CI [0.55 to 1.08], P < 0.00001). However, there was no significant effect on orientation (SMD = 0.36, 95% CI [- 0.04 to 0.76], P = 0.07). Subgroup analysis based on the number of sessions was conducted, revealing a significant improvement in global cognition among patients with PSCI across the three categories (10 sessions, 20 sessions, and 30 sessions) with no between-group difference (P = 0.28). None of the included studies reported any serious adverse effects. CONCLUSION: In conclusion, iTBS appears to be a safe and effective non-invasive treatment that can enhance the cognitive abilities and daily living skills of patients with post-stroke cognitive impairment. However, our conclusion is constrained by the limited number of studies. Further high-quality, large-sample RCTs with extended follow-up periods are necessary to validate these findings. Integrating iTBS with brain imaging techniques, such as functional near-infrared spectroscopy and functional magnetic resonance, could aid in understanding the mechanism of iTBS action.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Ritmo Teta/fisiologia
13.
Neurol Sci ; 45(9): 4399-4416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38600332

RESUMO

OBJECTIVE: The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS: Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS: A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS: High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.


Assuntos
Disfunção Cognitiva , Metanálise em Rede , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/reabilitação , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos
14.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34934000

RESUMO

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST-spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.


Assuntos
Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Tratos Piramidais/fisiologia , Medula Espinal/fisiologia , Animais , Potencial Evocado Motor/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Ratos
15.
Brain Inj ; 38(9): 675-686, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651344

RESUMO

BACKGROUND: Growing evidence suggests that cognitive dysfunction significantly impacts patients' quality of life. Intermittent theta burst stimulation (iTBS) has emerged as a potential intervention for cognitive dysfunction. However, consensus on the iTBS protocol for cognitive impairment is lacking. METHODS: We conducted searches in the Cochrane Central Register of Controlled Trials, EMBASE, PubMed, Chinese National Knowledge Infrastructure, Wanfang Database and the Chongqing VIP Chinese Science and Technology Periodical Database from their inception to January 2024. Random-effects meta-analyzes were used to calculate standardized mean differences and 95% confidence intervals. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS: Twelve studies involving 506 participants were included in the meta-analysis. The analysis showed a trend toward improvement of total cognitive function, activities of daily living and P300 latency compared to sham stimulation in patients with cognitive dysfunction. Subgroup analysis demonstrated that these effects were restricted to patients with post-stroke cognitive impairment but not Alzheimer's disease or Parkinson's disease. Furthermore, subthreshold stimulation also exhibited a significant improvement. CONCLUSIONS: The results suggest that iTBS may improve cognitive function in patients with cognitive dysfunction, although the quality of evidence remains low. Further studies with better methodological quality should explore the effects of iTBS on cognitive function.


Assuntos
Disfunção Cognitiva , Estimulação Magnética Transcraniana , Humanos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/reabilitação , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos
16.
Dysphagia ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008039

RESUMO

Dysphagia is the most common serious complication after stroke, with an incidence of about 37-78%, which seriously affects the independence of patients in daily life and clinical recovery. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, is an emerging option for post-stroke dysphagia. Theta burst stimulation (TBS) is a new mode of transcranial magnetic stimulation that simulates the frequency of pulses released in the hippocampus.Intermittent theta burst stimulation (iTBS) has been shown to increase cortical excitability and improve swallowing function in patients. Our study sought to summarize existing clinical randomized controlled trials to provide evidence-based medical evidence for the clinical use of iTBS. A computer search was conducted on 4 Chinese (Chinese Biomedical Literature Database, VIP Information Resource System, CNKI, and Wanfang Medical Science) and 4 English (including Cochrane Library, Embase, PubMed, Web of Science) databases to retrieve all randomized controlled trials in Chinese and English that explored the effects of Intermittent Theta Burst Stimulation for post-stroke dysphagia. The retrieval years are from database construction to 23 November 2023. The primary outcome measure was a change in Penetration/Aspiration Scale (PAS), Standardized Swallowing Assessment (SSA) and Functional Oral Intake Scale (FOIS), Secondary outcomes included Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), water-swallowing test (WST) etc. A meta-analysis by Standardized Mean Difference (SMD) and 95% confidence interval (CI) was performed with RevMan 5.3. we appraise risk of bias(RoB) of each study with the Cochrane RoB tool. Detailed instructions for using the Cochrane RoB tool are provided in the Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Handbook). Nine studies were obtained from eight databases after screening by inclusion and exclusion criteria, 567 patients from 9 studies were included in the meta-analysis, and one study was included in the qualitative analysis due to different control groups. Two of the nine studies had an unclear risk of bias, and four studies were at low risk. The results showed that iTBS significantly improved SSA, PAS, FOIS, and PAS scores in stroke patients compared to the control group(P < 0.05), and promoted swallowing function recovery. Our systematic review provides the first evidence of the efficacy of iTBS in improving dysphagia in stroke patients. However, the number of available studies limits the persuasiveness of the evidence and further validation by additional randomized controlled trials is needed.

17.
J Neuroeng Rehabil ; 21(1): 49, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589875

RESUMO

BACKGROUND: Non-invasive techniques such as central intermittent theta burst stimulation (iTBS) and repetitive peripheral magnetic stimulation (rPMS) have shown promise in improving motor function for patients with stroke. However, the combined efficacy of rPMS and central iTBS has not been extensively studied. This randomized controlled trial aimed to investigate the synergistic effects of rPMS and central iTBS in patients with stroke. METHOD: In this study, 28 stroke patients were randomly allocated to receive either 1200 pulses of real or sham rPMS on the radial nerve of the affected limb, followed by 1200 pulses of central iTBS on the ipsilesional hemisphere. The patients received the intervention for 10 sessions over two weeks. The primary outcome measures were the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and the Action Research Arm Test (ARAT). Secondary outcomes for activities and participation included the Functional Independence Measure-Selfcare (FIM-Selfcare) and the Stroke Impact Scale (SIS). The outcome measures were assessed before and after the intervention. RESULTS: Both groups showed significant improvement in FMA-UE and FIM-Selfcare after the intervention (p < 0.05). Only the rPMS + iTBS group had significant improvement in ARAT-Grasp and SIS-Strength and activity of daily living (p < 0.05). However, the change scores in all outcome measures did not differ between two groups. CONCLUSIONS: Overall, the study's findings suggest that rPMS may have a synergistic effect on central iTBS to improve grasp function and participation. In conclusion, these findings highlight the potential of rPMS as an adjuvant therapy for central iTBS in stroke rehabilitation. Further large-scale studies are needed to fully explore the synergistic effects of rPMS on central iTBS. TRIAL REGISTRATION: This trial was registered under ClinicalTrials.gov ID No.NCT04265365, retrospectively registered, on February 11, 2020.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Fenômenos Magnéticos , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Extremidade Superior , Método Duplo-Cego
18.
Neuromodulation ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38842956

RESUMO

OBJECTIVES: This study investigates the way theta burst stimulation (TBS) applied to the motor cortex (M1) affects TMS-evoked potentials (TEPs). There have been few direct comparisons of continuous TBS (cTBS) and intermittent TBS (iTBS), and there is a lack of consensus from existing literature on the induced effects. We performed an exploratory trial to assess the effect of M1-cTBS and M1-iTBS on TEP components. MATERIALS AND METHODS: In a cross-over design, 15 participants each completed three experimental sessions with ≥one week in between sessions. The effect of a single TBS train administered over M1 was investigated using TEPs recorded at the same location, 20 to 30 minutes before and in the first 10 minutes after the intervention. In each session, a different type of TBS (cTBS, iTBS, or active control cTBS) was administered in a single-blinded randomized order. For six different TEP components (N15, P30, N45, P60, N100, and P180), amplitude was compared before and after the intervention using cluster-based permutation (CBP) analysis. RESULTS: We were unable to identify a significant modulation of any of the six predefined M1 TEP components after a single train of TBS. When waiving statistical correction for multiple testing in view of the exploratory nature of the study, the CBP analysis supports a reduction of the P180 amplitude after iTBS (p = 0.015), whereas no effect was observed after cTBS or in the active control condition. The reduction occurred in ten of 15 subjects, showing intersubject variability. CONCLUSIONS: The observed decrease in the P180 amplitude after iTBS may suggest a neuromodulatory effect of iTBS. Despite methodologic issues related to our study and the potential sensory contamination within this latency range of the TEP, we believe that our finding deserves further investigation in hypothesis-driven trials of adequate power and proper design, focusing on disentanglement between TEPs and peripherally evoked potentials, in addition to indicating reproducibility across sessions and subjects. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT05206162.

19.
Eur Eat Disord Rev ; 32(3): 575-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303559

RESUMO

OBJECTIVE: We present the protocol of a feasibility randomised controlled trial (RCT) of intermittent theta burst stimulation (iTBS) for young people with anorexia nervosa (AN). Effective first-line psychological therapies exist for young people with AN, but little is known about how to treat those who do not respond. Non-invasive neuromodulation, such as iTBS, could address unmet treatment needs by targeting neurocircuitry associated with the development and/or maintenance of AN. DESIGN: Sixty-six young people (aged 13-30 years) with persistent AN will be randomly allocated to receive 20 sessions of real or sham iTBS over the left dorsolateral prefrontal cortex in addition to their usual treatment. Outcomes will be measured at baseline, post-treatment (1-month post-randomisation) and 4-months post-randomisation (when unblinding will occur). Additional open follow-ups will be conducted at 12- and 24-months post-randomisation. The primary feasibility outcome is the proportion of participants retained in the study at 4-months. Secondary outcomes include AN symptomatology, other psychopathology, quality of life, service utilisation, neurocognitive processes, and neuroimaging measures. DISCUSSION: Findings will inform the development of a future large-scale RCT. They will also provide exploratory data on treatment efficacy, and neural and neurocognitive predictors and correlates of treatment response to iTBS in AN.


Assuntos
Anorexia Nervosa , Estimulação Magnética Transcraniana , Humanos , Adolescente , Estimulação Magnética Transcraniana/métodos , Seguimentos , Anorexia Nervosa/terapia , Anorexia Nervosa/psicologia , Estudos de Viabilidade , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Neuroimage ; 272: 119991, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858333

RESUMO

The contribution of the prefrontal areas to visual awareness is critical for the Global Neuronal Workspace Theory and higher-order theories of consciousness. The goal of the present study was to test the potential engagement of the anterior medial prefrontal cortex (aMPFC) in visual awareness judgements. We aimed to temporarily influence the neuronal dynamics of the left aMPFC via neuroplasticity-like mechanisms. We used different Theta Burst Stimulation (TBS) protocols in combination with a visual identification task and visual awareness ratings. Either continuous TBS (cTBS), intermittent TBS (iTBS), or sham TBS was applied prior to the experimental paradigm in a within-participant design. Compared with sham TBS, we observed an increase in participants' ability to judge their perception adequately (metacognitive efficiency) following cTBS but not iTBS. The effect was accompanied by lower visual awareness ratings in incorrect responses. No significant differences in the identification task performance were observed. We interpret these results as evidence of the involvement of PFC in the brain network that underlies metacognition. Further, we discuss whether the results of TMS studies on perceptual metacognition can be taken as evidence for PFC involvement in awareness itself.


Assuntos
Metacognição , Humanos , Estimulação Magnética Transcraniana/métodos , Julgamento , Córtex Pré-Frontal/fisiologia , Plasticidade Neuronal/fisiologia , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA