Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2311313121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241436

RESUMO

Pharmacological therapies are promising interventions to slow down aging and reduce multimorbidity in the elderly. Studies in animal models are the first step toward translation of candidate molecules into human therapies, as they aim to elucidate the molecular pathways, cellular mechanisms, and tissue pathologies involved in the anti-aging effects. Trametinib, an allosteric inhibitor of MEK within the Ras/MAPK (Ras/Mitogen-Activated Protein Kinase) pathway and currently used as an anti-cancer treatment, emerged as a geroprotector candidate because it extended lifespan in the fruit fly Drosophila melanogaster. Here, we confirm that trametinib consistently and robustly extends female lifespan, and reduces intestinal stem cell (ISC) proliferation, tumor formation, tissue dysplasia, and barrier disruption in guts in aged flies. In contrast, pro-longevity effects of trametinib are weak and inconsistent in males, and it does not influence gut homeostasis. Inhibition of the Ras/MAPK pathway specifically in ISCs is sufficient to partially recapitulate the effects of trametinib. Moreover, in ISCs, trametinib decreases the activity of the RNA polymerase III (Pol III), a conserved enzyme synthesizing transfer RNAs and other short, non-coding RNAs, and whose inhibition also extends lifespan and reduces gut pathology. Finally, we show that the pro-longevity effect of trametinib in ISCs is partially mediated by Maf1, a repressor of Pol III, suggesting a life-limiting Ras/MAPK-Maf1-Pol III axis in these cells. The mechanism of action described in this work paves the way for further studies on the anti-aging effects of trametinib in mammals and shows its potential for clinical application in humans.


Assuntos
Drosophila melanogaster , Drosophila , Piridonas , Pirimidinonas , Animais , Masculino , Humanos , Feminino , Idoso , Drosophila melanogaster/genética , Envelhecimento/fisiologia , Células-Tronco/metabolismo , Mamíferos
2.
Proc Natl Acad Sci U S A ; 120(47): e2313137120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972068

RESUMO

KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Humanos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
3.
Mol Cancer ; 23(1): 35, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365721

RESUMO

BACKGROUND: circular RNAs (circRNAs) have been reported to exert important effects in the progression of numerous cancers. However, the functions of circRNAs in intrahepatic cholangiocarcinoma (ICC) are still unclear. METHODS: circPCNXL2 (has_circ_0016956) were identified in paired ICC by circRNA microarray. Then, we assessed the biological functions of circPCNXL2 by CCK8, EdU, clone formation, transwell, wound healing assays, and xenograft models. RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) were applied to explore the interaction between cirrcPCNXL2 and serine-threonine kinase receptor-associated protein (STRAP). RNA pull-down, RIP and luciferase reporter assays were used to investigate the sponge functions of circPCNXL2. In the end, we explore the effects of circPCNXL2 and trametinib (a MEK1/2 inhibitor) in vivo. RESULTS: circPCNXL2 was upregulated in ICC tissues and cell lines, which promoted the proliferation and metastasis of ICC in vitro and in vivo. In terms of the mechanisms, circPCNXL2 could directly bind to STRAP and induce the interaction between STRAP and MEK1/2, resulting in the tumor promotion in ICC by activation of ERK/MAPK pathways. Besides, circPCNXL2 could regulate the expression of SRSF1 by sponging miR-766-3p and subsequently facilitated the growth of ICC. Finally, circPCNXL2 could partially inhibit the anti-tumor activity of trametinib in vivo. CONCLUSION: circPCNXL2 played a crucial role in the progression of ICC by interacting with STRAP to activate the ERK signaling pathway, as well as by modulating the miR-766-3p/SRSF1 axis. These findings suggest that circPCNXL2 may be a promising biomarker and therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , RNA Circular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de Serina-Arginina/metabolismo
4.
Mol Cancer ; 23(1): 78, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643157

RESUMO

BACKGROUND: The identification of novel therapeutic strategies to overcome resistance to the MEK inhibitor trametinib in mutant KRAS lung adenocarcinoma (LUAD) is a challenge. This study analyzes the effects of trametinib on Id1 protein, a key factor involved in the KRAS oncogenic pathway, and investigates the role of Id1 in the acquired resistance to trametinib as well as the synergistic anticancer effect of trametinib combined with immunotherapy in KRAS-mutant LUAD. METHODS: We evaluated the effects of trametinib on KRAS-mutant LUAD by Western blot, RNA-seq and different syngeneic mouse models. Genetic modulation of Id1 expression was performed in KRAS-mutant LUAD cells by lentiviral or retroviral transductions of specific vectors. Cell viability was assessed by cell proliferation and colony formation assays. PD-L1 expression and apoptosis were measured by flow cytometry. The anti-tumor efficacy of the combined treatment with trametinib and PD-1 blockade was investigated in KRAS-mutant LUAD mouse models, and the effects on the tumor immune infiltrate were analyzed by flow cytometry and immunohistochemistry. RESULTS: We found that trametinib activates the proteasome-ubiquitin system to downregulate Id1 in KRAS-mutant LUAD tumors. Moreover, we found that Id1 plays a major role in the acquired resistance to trametinib treatment in KRAS-mutant LUAD cells. Using two preclinical syngeneic KRAS-mutant LUAD mouse models, we found that trametinib synergizes with PD-1/PD-L1 blockade to hamper lung cancer progression and increase survival. This anti-tumor activity depended on trametinib-mediated Id1 reduction and was associated with a less immunosuppressive tumor microenvironment and increased PD-L1 expression on tumor cells. CONCLUSIONS: Our data demonstrate that Id1 expression is involved in the resistance to trametinib and in the synergistic effect of trametinib with anti-PD-1 therapy in KRAS-mutant LUAD tumors. These findings suggest a potential therapeutic approach for immunotherapy-refractory KRAS-mutant lung cancers.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Piridonas , Pirimidinonas , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação para Baixo , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Modelos Animais de Doenças , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Angiogenesis ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969873

RESUMO

Arteriovenous malformations (AVM) are benign vascular anomalies prone to pain, bleeding, and progressive growth. AVM are mainly caused by mosaic pathogenic variants of the RAS-MAPK pathway. However, a causative variant is not identified in all patients. Using ultra-deep sequencing, we identified novel somatic RIT1 delins variants in lesional tissue of three AVM patients. RIT1 encodes a RAS-like protein that can modulate RAS-MAPK signaling. We expressed RIT1 variants in HEK293T cells, which led to a strong increase in ERK1/2 phosphorylation. Endothelial-specific mosaic overexpression of RIT1 delins in zebrafish embryos induced AVM formation, highlighting their functional importance in vascular development. Both ERK1/2 hyperactivation in vitro and AVM formation in vivo could be suppressed by pharmacological MEK inhibition. Treatment with the MEK inhibitor trametinib led to a significant decrease in bleeding episodes and AVM size in one patient. Our findings implicate RIT1 in AVM formation and provide a rationale for clinical trials with targeted treatments.

6.
Oncologist ; 29(1): 57-66, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37648247

RESUMO

BACKGROUND: Adjuvant therapies have been approved for resected melanoma based on improved recurrence-free survival. We present early findings from a real-world study on adjuvant treatments for melanoma. METHODS: A comprehensive chart review was conducted for patients receiving adjuvant systemic therapy for resected high-risk stages III and IV melanoma. Statistical analysis was performed to assess recurrence-free survival and subgroup differences. RESULTS: A total of 149 patients (median age = 58.0 years, 61.1% men, 49.7% with BRAF V600E/K genotypes) were included, with 94.6% having resected stage III melanoma. Anti-PD-1 immunotherapy was received by 86.5% of patients, while 13.4% received BRAF-targeted therapy. At a median follow-up of 22.4 months, the recurrence rate was 31.5%, with 1-year and 2-year recurrence-free survival rates of 79% and 62%, respectively. Similar recurrence rates were observed between anti-PD-1 immunotherapy and BRAF-targeted therapy. Long-term toxicity affected 27.4% of patients, with endocrinopathies and late-emergent immune-related adverse events being common. CONCLUSIONS: Real-world adjuvant systemic therapy aligns with clinical trial practice. Recurrence rates remain high despite treatment, and long-term toxicities, including endocrinopathies and chronic inflammatory conditions, are not uncommon.


Assuntos
Melanoma , Neoplasias Cutâneas , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/cirurgia , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico
7.
Ann Oncol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754780

RESUMO

BACKGROUND: Neoadjuvant dabrafenib plus trametinib has a high pathological response rate and impressive short-term survival in patients with resectable stage III melanoma. We report 5-year outcomes from the phase II NeoCombi trial. PATIENTS AND METHODS: NeoCombi (NCT01972347) was a single-arm, open-label, single-centre, phase II trial. Eligible patients were adults (aged ≥18 years) with histologically confirmed, resectable, RECIST-measurable, American Joint Committee on Cancer seventh edition clinical stage IIIB-C BRAF V600E/K-mutant melanoma and Eastern Cooperative Oncology Group performance status ≤1. Patients received 52 weeks of treatment with dabrafenib 150 mg (orally twice per day) plus trametinib 2 mg (orally once per day), with complete resection of the pre-therapy tumour bed at week 12. RESULTS: Between 20 August 2014 and 19 April 2017, 35 patients were enrolled. At data cut-off (17 August 2021), the median follow-up was 60 months [95% confidence interval (CI) 56-72 months]. Overall, 21 of 35 (60%) patients recurred, including 12 (57%) with first recurrence in locoregional sites (followed by later distant recurrence in 6) and 9 (43%) with first recurrence in distant sites, including 3 in the brain. Most recurrences occurred within 2 years, with no recurrences beyond 3 years. At 5 years, recurrence-free survival (RFS) was 40% (95% CI 27% to 60%), distant metastasis-free survival (DMFS) was 57% (95% CI 42% to 76%), and overall survival was 80% (95% CI 67% to 94%). Five-year survival outcomes were stratified by pathological response: RFS was 53% with pathological complete response (pCR) versus 28% with non-pCR (P = 0.087), DMFS was 59% versus 55% (P = 0.647), and overall survival was 88% versus 71% (P = 0.205), respectively. CONCLUSIONS: Neoadjuvant dabrafenib plus trametinib has high pathological response rates in clinical stage III melanoma, but low rates of RFS, similar to those achieved with adjuvant targeted therapy alone. Patients with a pCR to dabrafenib plus trametinib still had a high risk of recurrence, unlike that seen with immunotherapy where recurrences are rare.

8.
Rev Endocr Metab Disord ; 25(1): 123-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37648897

RESUMO

Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Idoso , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Neoplasias da Glândula Tireoide/genética , Mutação
9.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778340

RESUMO

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Assuntos
Movimento Celular , Vesículas Extracelulares , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Vemurafenib/farmacologia , Pirimidinonas/farmacologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Imidazóis/farmacologia , Oximas/farmacologia
10.
J Neurooncol ; 167(3): 447-454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443693

RESUMO

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Assuntos
Neurofibromatose 1 , Testes Neuropsicológicos , Piridonas , Pirimidinonas , Humanos , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/administração & dosagem , Masculino , Feminino , Adolescente , Criança , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/complicações , Neurofibromatose 1/psicologia , Adulto Jovem , Pré-Escolar , Glioma/tratamento farmacológico , Glioma/psicologia , Glioma/complicações , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/psicologia , Neoplasias Encefálicas/complicações , Adulto , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/efeitos adversos
11.
Pediatr Blood Cancer ; 71(7): e31032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711167

RESUMO

BACKGROUND: Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE: Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS: Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS: Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.


Assuntos
Angiopoietina-2 , Proteínas de Membrana , Animais , Humanos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Mutação , Transdução de Sinais , Camundongos Transgênicos
12.
Bioorg Med Chem ; 102: 117674, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457912

RESUMO

Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Inibidores da Angiogênese/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
13.
Acta Pharmacol Sin ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871922

RESUMO

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

14.
Mol Ther ; 31(4): 986-1001, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739480

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.


Assuntos
Leucemia Mielomonocítica Juvenil , Animais , Camundongos , Azacitidina/farmacologia , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Inibidores de Proteínas Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos
15.
J Oncol Pharm Pract ; 30(3): 576-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258317

RESUMO

OBJECTIVE: To review the evidence of uncommon but fatal adverse event of hyperammonemic encephalopathy by tyrosine kinase inhibitors (TKI) and the possible mechanisms underlying this condition and to describe the case of a patient that developed drug-induced hyperammonemic encephalopathy related to TKI. DATA SOURCES: Literature search of different databases was performed for studies published from 1 January 1992 to 7 May 2023. The search terms utilized were hyperammonemic encephalopathy, TKI, apatinib, pazopanib, sunitinib, imatinib, sorafenib, regorafenib, trametinib, urea cycle regulation, sorafenib, carbamoyl-phosphate synthetase 1, ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinate lyase, arginase 1, Mitogen activated protein kinases (MAPK) pathway and mTOR pathway, were used individually search or combined. DATA SUMMARY: Thirty-seven articles were included. The articles primarily focused in hyperammonemic encephalopathy case reports, management of hyperammonemic encephalopathy, urea cycle regulation, autophagy, mTOR and MAPK pathways, and TKI. CONCLUSION: Eighteen cases of hyperammonemic encephalopathy were reported in the literature from various multitargeted TKI. The mechanism of this event is not well-understood but some authors have hypothesized vascular causes since some of TKI are antiangiogenic, however our literature review shows a possible relationship between the urea cycle and the molecular inhibition exerted by TKI. More preclinical evidence is required to unveil the biochemical mechanisms responsible involved in this process and clinical studies are necessary to shed light on the prevalence, risk factors, management and prevention of this adverse event. It is important to monitor neurological symptoms and to measure ammonia levels when manifestations are detected.


Assuntos
Hiperamonemia , Inibidores de Proteínas Quinases , Humanos , Hiperamonemia/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Masculino , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Encefalopatias/induzido quimicamente
16.
Pediatr Dermatol ; 41(3): 523-525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38273779

RESUMO

We present the case of a 20-month-old girl with Schimmelpenning-Feuerstein-Mims (SFM) syndrome with extensive head, neck, and torso skin involvement successfully managed with topical trametinib. Trametinib interferes downstream of KRAS and HRAS in the MAPK signaling pathway, of which KRAS was implicated in our child's pathogenic variant. Although other dermatologic conditions have shown benefit from oral trametinib, its topical use has not been well reported. Our patient showed benefit from the use of twice-daily topical trametinib, applied to the epidermal and sebaceous nevi over a 16-month period, leading to decreased pruritus and thinning of the plaques.


Assuntos
Piridonas , Pirimidinonas , Neoplasias Cutâneas , Humanos , Piridonas/uso terapêutico , Piridonas/administração & dosagem , Feminino , Pirimidinonas/uso terapêutico , Pirimidinonas/administração & dosagem , Lactente , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Nevo/tratamento farmacológico , Insuficiência de Crescimento/tratamento farmacológico , Administração Tópica , Anormalidades Múltiplas/tratamento farmacológico , Nevo Sebáceo de Jadassohn/tratamento farmacológico , Síndromes Neurocutâneas/tratamento farmacológico , Síndromes Neurocutâneas/diagnóstico , Anormalidades da Pele/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anormalidades do Olho/tratamento farmacológico , Doenças da Imunodeficiência Primária/tratamento farmacológico
17.
Pediatr Hematol Oncol ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647418

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric leukemia with few effective treatments and poor outcomes even after stem cell transplantation, the only current curative treatment. We developed a JMML patient-derived xenograft (PDX) mouse model and demonstrated the in vivo therapeutic efficacy and confirmed the target of trametinib, a RAS-RAF-MEK-ERK pathway inhibitor, in this model. A PDX model was created through transplantation of patient JMML cells into mice, up to the second generation, and successful engraftment was confirmed using flow cytometry. JMML PDX mice were treated with trametinib versus vehicle control, with a median survival of 194 days in the treatment group versus 124 days in the control group (p = 0.02). Trametinib's target as a RAS pathway inhibitor was verified by showing inhibition of ERK phosphorylation using immunoblot assays. In conclusion, trametinib monotherapy significantly prolongs survival in our JMML PDX model by inhibiting the RAS pathway. Our model can be effectively used for assessment of novel targeted treatments, including potential combination therapies, to improve JMML outcomes.

18.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930946

RESUMO

Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Inflamação , Estresse Oxidativo , Piridonas , Pirimidinonas , Animais , Cisplatino/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Piridonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Pirimidinonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
19.
Gynecol Oncol ; 168: 17-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368128

RESUMO

OBJECTIVE: The GOG 281/LOGS trial found that trametinib prolonged progression-free survival (PFS) in patients with recurrent low-grade serous ovarian cancer (LGSOC), compared with standard of care (SOC). The current study aimed to evaluate the cost-effectiveness of trametinib versus standard of care for recurrent LGSOC from the US payer perspective. METHODS: A Markov model was adopted to compare the cost and effectiveness of trametinib and standard of care group in patients with recurrent LGSOC. Life years (LYs), quality-adjusted LYs (QALYs), lifetime costs, and incremental cost-effectiveness ratios (ICERs) were calculated. One-way, and probabilistic sensitivity analyses were performed to explore the model robustness. RESULT: Trametinib group provided an additional 0.58 QALYs (1.14 LYs) and an incremental cost of $248,214 compared with the SOC group. The incremental cost-effectiveness ratio was $424,097 per QALY. The results of one-way sensitivity analyses suggested that our model was sensitive to the hazard ratio of OS and PFS between trametinib and SOC group, utility of PFS and the cycle cost of trametinib. Probabilistic sensitivity analyses revealed that there was 6% probability of the trametinib group being cost-effective at a willingness-to-pay (WTP) threshold of $150,000 per QALY. CONCLUSIONS: From the US payer perspective, trametinib is not cost-effective for patients with recurrent LGSOC at the assumed WTP threshold of $150,000 per QALY. Based on the value standpoint, price reduction of trametinib is expected to improve the cost-effectiveness of trametinib in patients with recurrent LGSOC.


Assuntos
Análise de Custo-Efetividade , Neoplasias Ovarianas , Humanos , Feminino , Análise Custo-Benefício , Piridonas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Anos de Vida Ajustados por Qualidade de Vida
20.
Pharmacol Res ; 192: 106782, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127213

RESUMO

Melanoma resistance to BRAF inhibitors (BRAFi) is often accompanied by a switch from a proliferative to an invasive phenotype. Therefore, the identification of signaling molecules involved in the development of metastatic properties by resistant melanoma cells is of primary importance. We have previously demonstrated that activation of neuropilin-1 (NRP-1) by platelet-derived growth factor (PDGF)-C confers melanoma cells with an invasive behavior similar to that of BRAFi resistant tumors. Aims of the present study were to evaluate the role of PDGF-C/NRP-1 autocrine loop in the acquisition of an invasive and BRAFi-resistant phenotype by melanoma cells and the effect of its inhibition on drug resistance and extracellular matrix (ECM) invasion. Furthermore, we investigated whether PDGF-C serum levels were differentially modulated by drug treatment in metastatic melanoma patients responsive or refractory to BRAFi as single agents or in combination with MEK inhibitors (MEKi). The results indicated that human melanoma cells resistant to BRAFi express higher levels of PDGF-C and NRP-1 as compared to their susceptible counterparts. Overexpression occurs early during development of drug resistance and contributes to the invasive properties of resistant cells. Accordingly, silencing of NRP-1 or PDGF-C reduces tumor cell invasiveness. Analysis of PDGF-C in the serum collected from patients treated with BRAFi or BRAFi+MEKi, showed that in responders PDGF-C levels decrease after treatment and raise again at tumor progression. Conversely, in non-responders treatment does not affect PDGF-C serum levels. Thus, blockade of NRP-1 activation by PDGF-C might represent a new therapeutic approach to counteract the invasiveness of BRAFi-resistant melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neuropilina-1/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA