Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(9): e2205876, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36494175

RESUMO

Electrocatalytic biomass upgrading has proven to be an effective technique for generating value-added products. Herein, the design and development of furfural upgrading using transition-metal borides (MBenes) with simultaneous production of hydrogen are presented. Using density functional theory, the stabilities, selectivities, and activities of 13 MBene candidates are systematically evaluated for furfural upgrading. This research suggests that Fe2 B2 can serve as a promising electrocatalyst for the formation of furoic acid (FAC), with a limiting potential of -0.15 V, and 5-hydroxy-2(5H)-furanone (HFO), with a limiting potential of -0.93 V. Furthermore, Fe2 B2 and Mn2 Fe2 are shown to exhibit favorable limiting potentials of -1.35 and -1.36 V, respectively, for producing 6-hydroxy-2.3-dihydro-6H-pyrano-3-one (HDPO), indicating that they may also serve as electrocatalysts. Based on Sabatier's principle, a descriptor (φ) of material properties is developed for screening catalysts with high catalytic activity considering the electronegativities and d-electron number of metals. Additionally, surface redox potential, electronic properties, and charge-density differences are determined for Fe2 B2 , which is estimated to exhibit high catalytic activity for the oxidation of furfural to FAC and HFO.

2.
Chemistry ; 29(7): e202202925, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333274

RESUMO

Fixing nitrogen (N2 ) by electrosynthesis method has become a promising way to ammonia (NH3 ) production, nevertheless, developing electrocatalysts combining long-term stable and low-cost feathers are still a great challenge to date. Using comprehensive first-principles calculations, we herein investigate the potential of a new class of two-dimensional (2D) transition metal tri-borides (TMB3 s) as nitrogen reduction reaction (NRR) electrocatalysts, and explore the effect of magnetic orders on the NRR. Our results show that the TMB3 s can sufficiently activate N2 and convert it to NH3 . Particularly, TiB3 is identified as a high-efficiency catalyst for NRR because of its low limiting potential (-0.24 V) and good suppression of the competitive hydrogen evolution reaction (HER). For the first time, we present that these TMB3 s with various magnetic states exhibit different performances in the adsorption of N2 and NRR intermediates, and minor effect on activation of N2 . Besides, VB3 , CrB3 , MnB3 , and FeB3 monolayers possess the superior capacity to suppress surface oxidation via the self-activating process, which reduces * O/* OH into * H2 O under NRR electrochemical conditions, thus favoring the N2 electroreduction. This work paves the way for finding high-performance NRR catalysts for transition metal borides and pioneering the research of magnetic states effects in NRR.

3.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138435

RESUMO

Currently, two-dimensional (2D) materials with intrinsic antiferromagnetism have stimulated research interest due to their insensitivity to external magnetic fields and absence of stray fields. Here, we predict a family of stable transition metal (TM) borides, TMB12 (TM = V, Cr, Mn, Fe) monolayers, by combining TM atoms and B12 icosahedra based on first-principles calculations. Our results show that the four TMB12 monolayers have stable antiferromagnetic (AFM) ground states with large magnetic anisotropic energy. Among them, three TMB12 (TM=V, Cr, Mn) monolayers display an in-plane easy magnetization axis, while the FeB12 monolayer has an out-of-plane easy magnetization axis. Among them, the CrB12 and the FeB12 monolayers are AFM semiconductors with band gaps of 0.13 eV and 0.35 eV, respectively. In particular, the AFM FeB12 monolayer is a spin-polarized AFM material with a Néel temperature of 125 K. Moreover, the electronic and magnetic properties of the CrB12 and the FeB12 monolayers can be modulated by imposing external biaxial strains. Our findings show that the TMB12 monolayers are candidates for designing 2D AFM materials, with potential applications in electronic devices.

4.
Small ; 18(47): e2203588, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287089

RESUMO

Mild construction of highly efficient and durable practical electrodes for overall water splitting (OWS) at industrial-grade current density is currently a significant challenge. Herein, metal-organic framework (MOF) materials are grown in situ on the surface of carbon cloth (CC) at 25 °C, and quickly "interspersed" by cobalt-boron (Co-B) via electroless plating for 30 min to obtain a highly efficient and stable CoB@MOF@CC self-supporting electrode. Owing to the large specific surface area, abundant active sites, and porous structure, the MOF-based CC modified by bamboo leaf-like ultrathin CoB has remarkable electrochemical catalysis efficiency. The CoB@MOF@CC electrode exhibits excellent performance during the hydrogen evolution reaction (η10  = 57 mV, η500  = 266 mV) and oxygen evolution reaction (η10  = 209 mV, η500  = 423 mV) in alkaline simulated seawater, and is durable for 2500 h at 500 mA cm-2 . The OWS performance is obviously enhanced by employing the prepared electrode, which only requires 1.49 V to achieve 10 mA cm-2 and is durable for over 360 h at industrial-grade current densities in alkaline high-salt, real seawater, rainwater, and urea electrolytes.


Assuntos
Estruturas Metalorgânicas , Tato , Catálise , Eletrodos , Água/química , Carbono , Água do Mar
5.
Small ; 17(24): e2100776, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983676

RESUMO

Here, the authors performed density functional theory calculations to study the catalytic performance of the nitric oxide reduction reaction (NORR) via a series of transition metal borides (MBenes). This work screened the M2 B2 type MBenes from the IVB to V transition metals from the periodic table and systematically probed the catalytic activity and selectivity for the NORR process. It has been reported that Fe2 B2 , Mn2 B2 , and Rh2 B2 can be high-performance catalysts for converting NO to NH3 with smaller limiting potentials than other MBenes, and Nb2 B2 and Hf2 B2 have low limiting potentials of -0.11 V and -0.17 V for the NO production of NH3 . The binding energy of ΔG*N can be a good descriptor of catalytic performance and is determined by the volcano plot of the rate-determining step. The reaction mechanisms for NO reduction to NH3 , N2 , and N2 O have been studied in detail, atomic *N can interact with another *N or one *NO molecule to form N2 and N2 O via two successive hydrogenations. In this regard, *NO hydrogenation to *NOH has a lower formation energy than *HNO, and the MBenes have high selectivity for promoting the NORR and suppressing the hydrogen evolution reaction competition process.

6.
Angew Chem Int Ed Engl ; 58(44): 15855-15862, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373096

RESUMO

Two novel lithium nickel boride polymorphs, RT-LiNiB and HT-LiNiB, with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized by a hydride route with LiH as the lithium source. Unique among the known ternary transition-metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers composed of Ni hexagonal rings with a B-B pair at the center. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction, solid-state 7 Li and 11 B NMR spectroscopy, scanning transmission electron microscopy, quantum-chemical calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors for exfoliation studies, thus paving a way toward two-dimensional transition-metal borides, MBenes.

7.
J Colloid Interface Sci ; 657: 511-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070337

RESUMO

Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.

8.
J Colloid Interface Sci ; 667: 553-562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657539

RESUMO

The construction of stable hierarchical surfaces through structural engineering is the key to improve reactive active sites and cycle stability to achieve high cycle performance of supercapacitors (SCs). In this work, the NiCo-LDH nanoflower as a structure guide agent was used to support NiCoB nanosheets to form a dense and stable hierarchical structure, thereby exposing more active sites and improving cycle stability. Due to the hierarchical stable surface structure, the NiCoB-0.3@NiCo-LDH-30 electrode has an excellent specific capacitance of 2710F g-1 at 1 A/g due to the excellent electrochemical active surface area (1259 mF cm-2), improving the OH- diffusion coefficient (2.4 × 10-9 cm2 s-1) and decreasing ionic diffusion barrier. After 5000 cycles, NiCoB-0.3@NiCo-LDH-30 electrode still has 92.6 % initial specific capacitance. In order to balance the energy density decrease caused by the capacitance imbalance between positive and negative electrodes, the cubed carbon (Co-C) derived from cobalt metal organic frameworks (Co-MOFs) as cathode with a good specific capacitance of 220F g-1 at 1 A/g is prepared. The assembled NiCoB-0.3@NiCo-LDH-30//Co-C hybrid SCs (HSCs), which are assembled with NiCoB-0.3@NiCo-LDH-30 electrode as anode and Co-C electrode as cathode, displays an energy density of 75 Wh kg-1 at a power density of 741 W kg-1.

9.
ACS Appl Mater Interfaces ; 16(22): 28578-28589, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38797977

RESUMO

Nickel-molybdenum-boron (Ni-Mo-B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni-Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni-Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni-Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm-2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm-2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm-2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.

10.
J Phys Condens Matter ; 35(17)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36758243

RESUMO

High boron content transition metal (TM) borides (HB-TMBs) have recently been regarded as the promising candidate for superhard multifunctional materials. High hardness stems from the covalent bond skeleton formed by high content of boron (B) atoms to resist deformation. High valence electron density of TM and special electronic structure fromp-dhybridization of B and TM are the sources of multifunction. However, the reason of hardness variation in different HB-TMBs is still a puzzle because hardness is a complex property mainly associated with structures, chemical bonds, and mechanical anisotropy. Rich types of hybridization in B atoms (sp, sp2, sp3) generate abundant structures in HB-TMBs. Studying the intrinsic interaction of structures and hardness or multifunction is significant to search new functional superhard materials. In this review, the stable structure, hardness, and multifunctionality of HB-TMBs are summarized. It is concluded that the structures of HB-TMBs are mainly composed by sandwiched stacking of B and TM layers. The hardness of HB-TMBs shows a increasing tendency with the decreasing atom radius. The polyhedron in strong B skeleton provides hardness support for HB-TMBs, among which C2/mis the most possible structure to meet the superhard standard. The shear modulus (G0) generates a positive effect for hardness of HB-TMBs, but the effect from bulk modulus (G0) is complex. Importantly, materials with a value ofB0/G0less than 1.1 are more possible to achieve the superhard standard. As for the electronic properties, almost all TMB3and TMB4structures exhibit metallic properties, and their density of states near the Fermi level are derived from the d electrons of TM. The excellent electrical property of HB-TMBs with higher B ratio such as ZrB12comes from the channels between B-Bπ-bond and TM-d orbitals. Some HB-TMBs also indicate superconductivity from special structures, most of them have stronger hybridization of d electrons from TM atoms than p electrons from B atoms near the Fermi level. This work is meaningful to further understand and uncover new functional superhard materials in HB-TMBs.

11.
J Colloid Interface Sci ; 636: 627-636, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680953

RESUMO

The development of electronic information technology has placed higher demands on microwave absorption materials (MAMs), especially the exploration of novel MAMs to broaden their application. At present, little attention has been given the wave absorption properties of transition metal borides (TMBs). In this work, a simple and economical method is developed to prepare Ni3B/Ni heterostructure nanosheets and their possible applications for microwave absorption (MA) and supercapacitor are evaluated. It is worth noting that Ni3B/Ni nanosheets exhibit excellent MA properties due to the aggregated nanosheet-like morphology of Ni3B/Ni with enhancing interfacial polarization, as well as the synergistic effect of dielectric and magnetic losses. It is observed in experiments that the minimum reflection loss value of Ni3B/Ni is -41.60 dB at 16.8 GHz. Moreover, the maximum effective absorption bandwidth can reach 3.28 GHz. Furthermore, Ni3B/Ni has good energy storage characteristics and is able to provide a specific capacity of 1150.6F g-1 at a current density of 1 A g-1. Meanwhile, it has the ability to maintain an initial capacity of 74.4 % after 1000 cycles at a current density of 10 A g-1. Therefore, this study provides an idea to explore TMBs as high-performance MA and supercapacitor materials.

12.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512379

RESUMO

Compared to other 2D materials, MBenes are at an early stage of investigation in terms of both experimental and theoretical approaches. However, their wide range of possible 2D structures leads to novel and challenging properties and consequent applications. From all the possible stoichiometries, we performed a theoretical study of orthorhombic and hexagonal M2B2 MBenes within the framework of density functional theory. We found that both symmetries of Cr2B2, Fe2B2, and Zr2B2 show metallic behavior and could be grown under certain conditions as they were demonstrated to be dynamically stable. Moreover, the values of the magnetic moment observed, in specific ferromagnetic cases exceeding 2.5µB/M2B2, make them suitable as robust 2D magnets. Our findings represent an important step in the understanding of MBenes and open several windows to future research in fields like energy conversion and storage, sensing, catalysis, biochemistry, and nanotechnology, among others.

13.
J Colloid Interface Sci ; 652(Pt B): 1954-1964, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690303

RESUMO

Exploring multifunctional electrocatalysts to realize efficient hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is urgently desired for developing novel renewable energy storage and conversion technologies. However, integrating these three merits in one single catalyst remains a big challenge due to the difficulty in balancing the adsorption strengths of multiple reaction intermediates. Herein, through first-principles calculations, we systematically investigated the electrocatalytic activity of M2B2, M3B4, and M4B6 type MBenes (M = Cr, Mn, Fe, Co, and Ni) for multifunctional HER, OER, and ORR. The results indicate that most of the investigated MBenes show outstanding catalytic activity for HER with hydrogen adsorption Gibbs free energy close to the optimal value (0 eV). Thereinto, Ni2B2 and Co3B4 MBenes can be promising multifunctional HER/OER/ORR electrocatalysts, and Fe3B4 MBene is expected to be a promising bifunctional electrocatalyst for HER/ORR. Especially, Ni2B2 MBene is even better than the benchmark RuO2 catalyst with ultralow low overpotentials of 0.26 and 0.30 V for OER and ORR, respectively. Then, we proposed that the overpotentials of OER/ORR can be well described by the varied ΔGOH* on MBene, which has been further illuminated through the d-band center and charge transfer analysis. Importantly, new scaling relations between the adsorption energies of OOH* and O* on MBenes have been established, where ΔGOOH* and ΔGO* possess different slopes versus ΔGOH*, allowing the significantly lower overpotentials of OER and ORR to be achieved. This work provides not only promising multifunctional HER/OER/ORR electrocatalysts but also new scaling relations to achieve the rational design of MBene-based electrocatalysts.

14.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834632

RESUMO

All-in-one radiation shielding is an emerging concept in developing new-generation radiation protection materials since various forms of ionizing radiation, such as neutrons and gamma rays, can occur simultaneously. In this study, we examine the ability of transition metal borides to attenuate both photon and particle radiation. Specifically, fourteen different transition metal borides (including inner transition metal borides) are selected for examination based on their thermodynamic stabilities, molecular weights, and neutron capture cross-sections of the elements they contain. Radiation shielding characteristics of the transition metal borides are computationally investigated using Phy-X/PSD, EpiXS and NGCal software. The gamma-ray shielding capabilities of the transition metal borides are evaluated in terms of the mass attenuation coefficient (µm), the linear attenuation coefficient (µ), the effective atomic number (Zeff), the half-value layer (HVL), the tenth-value layer (TVL), and the mean free path (MFP). The mass and linear attenuation factors are identified for thermal and fast neutrons at energies of 0.025 eV and 4 MeV, respectively. Moreover, the fast neutron removal cross-sections (∑R) of the transition metal borides are calculated to assess their neutron shielding abilities. The results revealed that borides of transition metals with a high atomic number, such as Re, W, and Ta, possess outstanding gamma shielding performance. At 4 MeV photon energy, the half-value layers of ReB2 and WB2 compounds were found as 1.38 cm and 1.43 cm, respectively. Most notably, these HVL values are lower than the HVL value of toxic Pb (1.45 cm at 4 MeV), which is one of the conventional radiation shielding materials. On the other hand, SmB6 and DyB6 demonstrated exceptional neutron attenuation for thermal and fast neutrons due to the high neutron capture cross-sections of Sm, Dy, and B. The outcomes of this study reveal that transition metal borides can be suitable candidates for shielding against mixed neutron and gamma radiation.

15.
Adv Mater ; 34(23): e2108840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506196

RESUMO

2D MBenes, early transition metal borides, are a very recent derivative of ternary or quaternary transition metal boride (MAB) phases and represent a new member in the flatland. Although holding great potential toward various applications, mainly theoretical knowledge about their potential properties is available. Theoretical calculations and preliminary experimental attempts demonstrate their rich chemistry, excellent reactivity, mechanical strength/stability, electrical conductivity, transition properties, and energy harvesting possibility. Compared to MXenes, MBenes' structure appears to be more complex due to multiple crystallographic arrangements, polymorphism, and structural transformations. This makes their synthesis and subsequent delamination into single flakes challenging. Overcoming this bottleneck will enable a rational control over MBenes' material-structure-property relationship. Innovations in MBenes' postprocessing approaches will allow for the design of new functional systems and devices with multipurpose functionalities thus opening a promising paradigm for the conscious design of high-performance 2D materials.

16.
Materials (Basel) ; 15(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454458

RESUMO

The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1-10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications.

17.
J Phys Condens Matter ; 33(15)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33682685

RESUMO

A family of two-dimensional (2D) transition metal borides, referred to as MBenes, is recently emerging as novel materials with great potentials in electronic and energy harvesting applications to the field of materials science and technology. Transition metal borides can be synthesized from chemical exfoliation of ternary-layered transition metal borides, known as MAB phases. Previously it has been predicted that thin pristine 2D Sc-, Ti-, Zr-, Hf-, V-, Nb-, Ta-, Mo-, and W-based transition metal borides with hexagonal phase are more stable than their corresponding orthorhombic phase. Here, using a set of first-principles calculations (at absolute zero temperature), we have examined the geometric, dynamic stability, electronic structures, work function, bond strength, and mechanical properties of the hexagonal monolayer of transition metal borides (M= Sc, Ti, Zr, Hf, V, Nb, Ta, Mo, and W) chemically terminated with F, O, and OH. The results of the formation energies of terminated structures imply that the surface terminations could make a strong bond to the surface transition metals and provide the possibility of the development of transition metal borides with those surface terminations. Except for ScBO, which is an indirect bandgap semiconductor, the other transition metal borides are metallic or semimetal. Particularly, TiBF, ZrBF, and HfBF are metallic systems whose band dispersions close to the Fermi level indicate the coexistence of type-I and type-II nodal lines. Our calculated work functions indicate that 2D transition metal borides with OH (O) functionalization obtain the lowest (highest) work functions. The results of the mechanical properties of the considered structures imply that oxygen functionalized transition metal borides exhibit the stiffest mechanical strength with 248

18.
ACS Appl Mater Interfaces ; 13(36): 42605-42612, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472828

RESUMO

Transition metal borides (TMBs) are a class of important but less well-explored electrocatalytic materials for water splitting. The lack of an advanced methodology to synthesize complex nanostructured TMBs with tunable surface properties is a major obstacle to the exploration of the full potential of TMBs for electrocatalytic applications. Here, we report the facile fabrication of a cobalt foam (CF)-supported hierarchical nanostructured Co-Mo-B/CoMoO4-x composite using a hydrothermal method, followed by annealing and NaBH4 reduction treatments. Our study found that NaBH4 reduction of CoMoO4 resulted in the concurrent formation of amorphous Co-Mo-B and an O-vacancy-rich CoMoO4-x substrate, which cooperatively catalyzed the hydrogen evolution reaction (HER) in an alkaline electrolyte. The hierarchical nanoporous structure derived from the dehydration and partial reduction reactions of the CoMoO4·nH2O precursor could offer ample accessible active sites, as well as interconnected channels for rapid mass transfer. In addition, the in situ growth of electrically conductive Co-Mo-B nanoparticles on the defective structured CoMoO4-x substrate imparted the electrocatalyst with good electrical conductivity. As a result, the Co-Mo-B/CoMoO4-x/CF catalyst showed impressively high activity and outstanding stability for the alkaline HER, outperforming most reported TMB electrocatalysts. For instance, it required an overpotential of 55 mV to afford 10 mA·cm-2 and showed a fluctuation of only ±8 mV in a 100 h constant-current test at 100 mA·cm-2.

19.
Small Methods ; 5(10): e2100699, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927953

RESUMO

The discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability. This review first summarizes the typical structural and electronic features of TMBs. Subsequently, the various synthetic methods used thus far to prepare nanostructured TMBs are listed. Furthermore, advances in emerging TMB-catalyzed reactions (both theoretical and experimental) are highlighted, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the carbon dioxide reduction reaction, the nitrogen reduction reaction, the methanol oxidation reaction, and the formic acid oxidation reaction. Finally, challenges facing the development of TMB electrocatalysts are discussed, with focus on synthesis and energy-related catalytic applications, and some potential strategies/perspectives are suggested as well, which will profit the design of more efficient TMB materials for application in future energy conversion and storage devices.

20.
Materials (Basel) ; 13(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260069

RESUMO

An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA