Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(11): 798-803, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126933

RESUMO

The study aims to execute machine learning (ML) method for building an intelligent prediction system for catalytic activities of a relatively big dataset of 1056 transition metal complex precatalysts in ethylene polymerization. Among 14 different algorithms, the CatBoost ensemble model provides the best prediction with the correlation coefficient (R2 ) values of 0.999 for training set and 0.834 for external test set. The interpretation of the obtained model indicates that the catalytic activity is highly correlated with number of atom, conjugated degree in the ligand framework, and charge distributions. Correspondingly, 10 novel complexes are designed and predicted with higher catalytic activities. This work shows the potential application of the ML method as a high-precision tool for designing advanced catalysts for ethylene polymerization.

2.
Electrophoresis ; 45(11-12): 1018-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279597

RESUMO

Over time, chiral organometallic compounds have attracted great interest in several fields, with applications going across several disciplines of chemical, biological, medical, and material sciences. In the last decades, due to advancements in molecular design and computational modeling, the chemistry of chiral transition metal complexes had a remarkable flowering, with the development of new structures for applications in asymmetric synthesis, bioinorganic chemistry, and molecular recognition. In these fields, fast chiral analysis to determine the enantiomeric purity of organometallic structures prepared by asymmetric synthesis, and for high-throughput screening of analytes, catalysts, and reactions, is very important. Capillary electrophoresis and related techniques proved to be extremely versatile for chiral analysis, showing unsurpassed advantages compared to chromatography like low consumption of materials, production of limited amounts of waste, fast equilibration, and possibility to replace easily type and concentration of the chiral selector, among others. Furthermore, electromigration techniques may be useful to gain details about the stereochemistry of the enantiomers of new compounds and to study analyte-selector noncovalent interactions at molecular level. On this basis, this short review aims to provide the reader with a comprehensive view on the enantioseparation of organometallic compounds by electromigration techniques, examining the topic from the historical perspective and showing what was made in this field so far, an essential know-how for developing new and advanced applications in the next future.


Assuntos
Eletroforese Capilar , Compostos Organometálicos , Estereoisomerismo , Compostos Organometálicos/química , Eletroforese Capilar/métodos
3.
Chemphyschem ; : e202400582, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831714

RESUMO

Metal-ligand interactions are at the heart of transition metal complexes. The Dewar-Chat-Duncanson model is often invoked, whereby the metal-ligand bonding is decomposed into the simultaneous ligand→metal electron donation and the metal→ligand back-donation. The separate quantification of both effects is not a trivial task, neither from experimental nor computational exercises. In this work we present the effective fragment orbitals (EFOs) and their occupations as a general procedure beyond the Kohn-Sham density functional theory (KS-DFT) framework for the identification and quantification of donor-acceptor interactions, using solely the wavefunction of the complex. Using a common Fe(II) octahedral complex framework, we quantify the σ-donor, π-donor, and π-acceptor character for a large and chemically diverse set of ligands, by introducing the respective descriptors σd, πd, and πa. We also explore the effect of the metal size, coordination number, and spin state on the donor/acceptor features. The spin-state is shown to be the most critical effect, inducing a systematic decrease of the sigma donation and π-backdonation going from low spin to high spin. Finally, we illustrate the ability of the EFOs to rationalize the Tolman electronic parameter and the trans influence in planar square complexes in terms of these new descriptors.

4.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338386

RESUMO

NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-π intramolecular interaction.

5.
Angew Chem Int Ed Engl ; : e202412097, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136339

RESUMO

A sulfonated tris(1-phenylpyrazolato)iridium(III) complex ([Ir(sppz)3]3-) serves as a proof-of-concept non-emissive enhancer of the widely used ECL detection system of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) with tri-n-propylamine (TPrA) co-reactant, acting through electrocatalysis of TPrA oxidation and efficient chemi-excitation of the luminophore. Using self-interference ECL spectroscopy, we show that the enhancer extends diffusion of the required electrogenerated precursors from the electrode surface. Previously reported enhancement through these pathways has been confounded by the inherent ECL of the enhancer, but the increase in [Ru(bpy)3]2+ ECL intensity using [Ir(sppz)3]3- was obtained without its concomitant emission. The most prominent enhancement (11-fold) occurred at low potentials associated with the 'indirect' co-reactant ECL pathway, which translated to between 2- and 6-fold enhancement when the luminophore was immobilised on microbeads as a general model for enhanced ECL assays.

6.
Angew Chem Int Ed Engl ; 63(2): e202303146, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539652

RESUMO

The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.

7.
Angew Chem Int Ed Engl ; 63(14): e202318684, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334325

RESUMO

Ru(BINAP)(PPh3)HCl cleanly reacts with LiCH2TMS to give Ru(BINAP)(PPh3) (1) that has been fully characterized, including by X-ray diffraction (BINAP and TMS stand for (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl and trimethylsilyl respectively). In sharp contrast with other carbonyl-free phosphine complexes of Ru(0), 1 demonstrates a strikingly high thermal stability and no propensity for intramolecular C-H activation (cyclometalation). Yet 1 coordinates acetonitrile and readily exchanges its PPh3 ligand with alkenes and dienes, thus behaving like a "masked" 16-e Ru(0) species. Electron-poor alkenes coordinate more readily than electron-rich ones, which testifies for the nucleophilic character of the Ru(0)-BINAP fragment. While being thermally stable, 1 is highly reactive and is capable of activating C-H and N-H bonds, and even of cleaving an inert N-Et bond. The combination of high reactivity and stability originates from the P,arene-chelation by the BINAP ligand, i.e., the coordinated π-arene stabilizes Ru(0) to prevent cyclometalation, yet it can slide upon substrate coordination, thereby enabling a variety of inert bond activation reactions to occur under mild conditions.

8.
J Comput Chem ; 44(3): 149-158, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312076

RESUMO

The metal dinitrogen bonding in a wide series of terminal end-on dinitrogen complexes is investigated with the charge displacement analysis based on natural orbitals of chemical valence (CD-NOCV). The effect of the σ donation and π backdonation on the NN bond are discussed and compared with the observations for a series of carbonyl complexes, published in 2016 by Tarantelli et al. The σ donation is relative invariant over the series of dinitrogen complexes and has no significant effect on the NN bond strength, whereas the π backdonation causes a considerable elongation of the NN bond. Some uncommon examples of weakly bound dinitrogen with blue-shifted stretching frequency compared to free N2 (ν = 2330 cm-1 ) are known. The dinitrogen bonding in these complexes is simulated with a point charge. Apparently, electrostatics account for the shortened N─N bond in these systems.

9.
J Comput Chem ; 44(27): 2120-2129, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37401535

RESUMO

The semiempirical GFNn-xTB ( n = 1 , 2 ) tight-binding methods are extended with a spin-dependent energy term (spin-polarization), enabling the fast and efficient screening of different spin states for transition metal complexes. While GFNn-xTB methods inherently can not differentiate properly between high-spin (HS) and low-spin (LS) states, this shortcoming is corrected with the presented methods termed spGFNn-xTB. The performance of spGFNn-xTB methods for spin state energy splittings is evaluated on a newly compiled benchmark set of 90 complexes (27 HS and 63 LS complexes) containing 3d, 4d, and 5d transition metals (termed TM90S) employing DFT references at the TPSSh-D4/def2-QZVPP level of theory. The challenging TM90S set contains complexes with charges between - 4 and +3, spin multiplicities between 1 and 6, and spin-splitting energies that range from - 47.8 to 146.6 kcal/mol with a mean average of 32.2 kcal/mol. On this set the (sp)GFNn-xTB methods, the PM6-D3H4 method, and the PM7 method are evaluated with spGFN1-xTB yielding the lowest MAD of 19.6 kcal/mol followed by spGFN2-xTB with 24.8 kcal/mol. While for the 4d and 5d subsets small or no improvements are observed with spin-polarization, large improvements are obtained for the 3d subset with spGFN1-xTB yielding the smallest MAD of 14.2 kcal/mol followed by spGFN2-xTB with 17.9 kcal/mol and PM6-D3H4 with 28.4 kcal/mol. The correct sign of the spin state splittings is obtained with spGFN2-xTB in 89% of all cases closely followed by spGFN1-xTB with 88%. On the full set, a pure semiempirical vertical spGFN2-xTB//GFN2-xTB-based workflow for screening purposes yields a slightly better MAD of 22.2 kcal/mol due to error compensation, while being qualitative correct for one additional case. In combination with their low computational cost (scanning spin states in seconds), the spGFNn-xTB methods represent robust tools for pre-screening steps of spin state calculations and high-throughput workflows.

10.
Chemistry ; 29(25): e202300034, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779392

RESUMO

Solid-state light-emitting electrochemical cells (LECs) show promising advantages of simple device architecture, low operation voltage, and insensitivity to the electrode work functions such that they have high potential in low-cost display and lighting applications. In this work, novel white LECs based on phosphor-sensitized thermally activated delayed fluorescence (TADF) are proposed. The emissive layer of these white LECs is composed of a blue-green phosphorescent host doped with a deep-red TADF guest. Efficient singlet-to-triplet intersystem crossing (ISC) on the phosphorescent host and the subsequent Förster energy transfer from the host triplet excitons to guest singlet excitons can make use of both singlet and triplet excitons on the host. With the good spectral overlap between the host emission and the guest absorption, 0.075 wt.% guest doping is sufficient to cause substantial energy transfer efficiency (ca. 40 %). In addition, such a low guest concentration also reduces the self-quenching effect and a high photoluminescence quantum yield of up to 84 % ensures high device efficiency. The phosphor-sensitized TADF white LECs indeed show a high external quantum efficiency of 9.6 %, which is comparable with all-phosphorescent white LECs. By employing diffusive substrates to extract the light trapped in the substrate, the device efficiency can be further improved by ca. 50 %. In the meantime, the intrinsic EL spectrum and device lifetime of the white LECs recover since the microcavity effect is destroyed. This work successfully demonstrates that the phosphor-sensitized TADF white LECs are potential candidates for efficient white light-emitting devices.

11.
Annu Rev Phys Chem ; 73: 187-208, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34985923

RESUMO

The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal-ligand covalency-the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstratefemtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal-ligand covalency.


Assuntos
Complexos de Coordenação , Elementos de Transição , Eletrônica , Ligantes , Metais , Análise Espectral Raman , Raios X
12.
J Comput Aided Mol Des ; 37(7): 279-299, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245168

RESUMO

We present a computational strategy based on thermodynamic cycles to predict and describe the chemical equilibrium between the 3d-transition metal ions Zn2+, Cu2+, and VO2+ and the widely used antineoplastic drug doxorubicin. Our method involves benchmarking a theoretical protocol to compute gas-phase quantities using DLPNO Coupled-Cluster calculations as reference, followed by estimating solvation contributions to the reaction Gibbs free energies using both explicit partial (micro)solvation steps for charged solutes and neutral coordination complexes, as well as a continuum solvation procedure for all solutes involved in the complexation process. We rationalized the stability of these doxorubicin-metal complexes by inspecting quantities obtained from the topology of their electron densities, particularly the bond critical points and non-covalent interaction index. Our approach allowed us to identify representative species in solution phase, infer the most likely complexation process for each case, and identify key intramolecular interactions involved in the stability of these compounds. To the best of our knowledge, this is the first study reporting thermodynamic constants for the complexation of doxorubicin with transition metal ions. Unlike other methods, our procedure is computationally affordable for medium-sized systems and provides valuable insights even with limited experimental data. Furthermore, it can be extended to describe the complexation process between 3d-transition metal ions and other bioactive ligands.


Assuntos
Antineoplásicos , Complexos de Coordenação , Termodinâmica , Complexos de Coordenação/química , Íons , Doxorrubicina , Zinco/química
13.
Luminescence ; 38(7): 1230-1243, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35986892

RESUMO

Progression in lighting sources mainly depended on new, robust energy-efficient diodes due to their advanced photometric properties. All organic light-emitting sources are constant energy-efficient devices and will be the light of the future. We explore the potential of transition metal complexes by focusing on cobalt(II), nickel(II), and copper (II) with aminoguanidine naphthoate as white phosphors in organic light-emitting diodes (OLEDs). The phosphors synthesized at optimized temperature were characterized structurally and thermally by spectral, thermal, and diffraction techniques. The photophysical studies of the target compound in several organic solvents having divergent polarity were also studied, and the results were exhibited. Photometric properties of the complexes were studied using photoluminescence, CIE (Commission internationale de l'éclairage) chromaticity coordinates, correlated color temperature, color purity, Duv, and TLCI (Television Lighting Consistency Index) to verify the applicability of complexes as phosphors. Excellent luminescence property with a high coloring index for (Cu(2NA-AMG-2H2 O)) opens the advanced avenue for light sources and serves as vital constituents for light-emitting diodes.


Assuntos
Complexos de Coordenação , Cobalto , Cobre , Níquel , Iluminação
14.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838661

RESUMO

The introduction of strong-field ligands can enable luminescence in first-row transition-metal complexes. In this way, earth-abundant near-infrared emitters can be obtained using early 3d metals. A prime example is the molecular ruby [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine) that can achieve high phosphorescence quantum yields at room temperature in aqueous solution. To understand these remarkable properties, here, we simulate its photodynamics in water using trajectory surface hopping on linear vibronic coupling potentials parametrized from multiconfigurational CASSCF/CASPT2 calculations. We find that after excitation to the second absorption band, a relaxation cascade through metal-centered states occurs. After an initial back-and-forth intersystem crossing with higher-lying doublet states, the complex relaxes through a manifold of quartet metal-centered states to the low-lying doublet metal-centered states which are responsible for the experimentally observed emission. These electronic processes are driven by an elongation of the Cr-ligand bond lengths as well as the twisting motion of the trans-coordinated pyridine units in the ddpd ligands. The low-lying doublet states are reached within 1-2 ps and are close in geometry to the doublet minima, thus explaining the high phosphorescence quantum yield of the molecular ruby [Cr(ddpd)2]3+.


Assuntos
Complexos de Coordenação , Ligantes , Complexos de Coordenação/química , Metais
15.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985544

RESUMO

Two transition metal complexes were synthesized with Ni(II) and Cu(II) using a tetradentate Schiff-base ligand, (R,R) and (S,S)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine. The stereochemical properties of the ligand and the metal complexes were investigated using a combined experimental and theoretical approach. Multiple spectroscopic techniques, which include IR, vibrational circular dichroism (VCD), UV-Vis and electronic circular dichroism (ECD), as well as Raman and the newly discovered ECD-circularly polarized Raman (i.e., eCP-Raman) spectroscopies were utilized. The good agreement achieved between the experimental and simulated IR, VCD, UV-Vis and ECD spectra of the ligand allowed one to identify the presence of three main ligand conformers in solution, thanks, especially to the high VCD sensitivity to the conformations associated with the tertbutyl groups. The helicity of the metal complexes was identified to be M and P for those with the (R,R) and (S,S) ligands, respectively. Furthermore, eCP-Raman measurements were carried out for the two metal complexes under (near) resonance. Their induced solvent chiral Raman features were explained, and the potential application of eCP-Raman was discussed.

16.
Angew Chem Int Ed Engl ; 62(20): e202302160, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929027

RESUMO

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

17.
Angew Chem Int Ed Engl ; 62(4): e202215394, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445806

RESUMO

A phosphine-stabilized silacyclopropyl cation 2 has been synthesized and fully characterized. Of particular interest, 2 reversibly isomerizes into the corresponding seven-membered cyclic (alkyl)(amino)silylene 3 at room temperature via a formal migratory ethylene insertion into the Si-P bond. Although silylene 3 has not been spectroscopically detected, its transient formation has been evidenced by the isolation of the corresponding disilene dimer 5 as well as by trapping reactions.

18.
Angew Chem Int Ed Engl ; 62(19): e202218606, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36744517

RESUMO

Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.

19.
Angew Chem Int Ed Engl ; 62(28): e202304615, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114904

RESUMO

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption. Two key coordinates for intersystem crossing have been identified, the Pt-Pt bond length and the orientation of the ligands coordinated with the platinum centers, along which the excited-state trajectories can be projected onto the calculated PESs of the excited states. This investigation has gleaned novel insight into electronic transitions occurring on the time scales of vibrational motions measured in real time, revealing ultrafast nonadiabatic or non-equilibrium processes along excited-state trajectories involving multiple excited-state PESs.

20.
Angew Chem Int Ed Engl ; 62(14): e202218648, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36573025

RESUMO

The syntheses of the first B9-connected carboranylphosphines (B9-Phos) featuring two carboranyl moieties as well as access to B9-Phos ligands with bulky electron-donating substituents, previously deemed unattainable, is reported. The electrochemical properties of the B9-Phos ligands were investigated, revealing the ability of the mesityl derivatives to form stabilized phosphoniumyl radical cations. The B9-Phos ligands display an extremely electron-releasing character surpassing that of alkyl phosphines and commonly used N-heterocyclic carbenes. This is demonstrated by their very small Tolman electronic parameters (TEPs) as well as extremely low P-Se coupling constants. Cone angles and buried volumes attest to the high steric demand exerted by the (di)carboranyl phosphines. The dicarboranyl phosphine AuI complexes show superior catalytic performance in the hydroamination of alkynes compared to the monocarboranyl phosphine analogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA