Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2789-2797, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407030

RESUMO

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

2.
Nano Lett ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356251

RESUMO

Straintronics leverages mechanical strain to alter the electronic properties of materials, providing an energy-efficient alternative to traditional electronic controls while enhancing device performance. Key to the application of straintronics is bandgap engineering, which enables tuning of the energy difference between the valence and conduction bands of a material to optimize its optoelectronic properties. This mini-review highlights the fundamental principles of straintronics and the critical role of bandgap engineering within this context. It discusses the unique characteristics of various two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), and black phosphorus, which make them suitable for strain-engineered applications. Detailed examples of how mechanical deformation can modulate the bandgap to achieve desired electronic properties are provided, while recent experimental and theoretical studies demonstrating the mechanisms by which strain influences the bandgap in these materials are reviewed, emphasizing their implications for device fabrication. The review concludes with an assessment of the challenges and future directions in the development of high-performing straintronic devices, highlighting their potential applications in flexible electronics, sensors, and optoelectronics.

3.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38061057

RESUMO

In this article, a 0.7 nm thick monolayer MoS2nanosheet gate-all-around field effect transistors (NS-GAAFETs) with conformal high-κmetal gate deposition are demonstrated. The device with 40 nm channel length exhibits a high on-state current density of ~410µAµm-1with a large on/off ratio of 6 × 108at drain voltage = 1 V. The extracted contact resistance is 0.48 ± 0.1 kΩµm in monolayer MoS2NS-GAAFETs, thereby showing the channel-dominated performance with the channel length scaling from 80 to 40 nm. The successful demonstration of device performance in this work verifies the integration potential of transition metal dichalcogenides for future logic transistor applications.

4.
Nanotechnology ; 35(42)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38991511

RESUMO

In this study, we report the successful synthesis of few-layer parallel PtSe2ribbons on an Au foil employing a surface melting strategyviathe chemical vapor deposition growth method at 650 °C. The controlled formation of parallel ribbons was directed by the Au steps generated through antimony treatment. These ribbons exhibit an average length of exceeding 100µm and a width of approximately 100 nm across a substantial area. Electrocatalysis measurements showcase the catalytic performance of PtSe2ribbons grown on Au foil, which can be further augmented through subsequent oxidation treatment. This investigation introduces an effective growth method for few-layer ribbons at low temperatures and broadens the scope of employing the substrate-guided strategies for the synthesis of one-dimensional materials. Additionally, it underscores the potential of PtSe2ribbons as an electrocatalyst for hydrogen evolution.

5.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368991

RESUMO

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

6.
Nano Lett ; 23(1): 198-204, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538369

RESUMO

Dark excitons in transition-metal dichalcogenides, with their long lifetimes and strong binding energies, provide potential platforms from photonic and optoelectronic applications to quantum information science even at room temperature. However, their spatial heterogeneity and sensitivity to strain is not yet understood. Here, we combine tip-enhanced photoluminescence spectroscopy with atomic force induced strain control to nanoimage dark excitons in WSe2 and their response to local strain. Dark exciton emission is facilitated by out-of-plane picocavity Purcell enhancement giving rise to spatially highly localized emission, providing for higher spatial resolution compared to bright exciton nanoimaging. Further, tip-antenna-induced dark exciton emission is enhanced in areas of higher strain associated with bubbles. In addition, active force control shows dark exciton emission to be more sensitive to strain with both compressive and tensile lattice deformation facilitating emission. This interplay between localized strain and Purcell effects provides novel pathways for nanomechanical exciton emission control.

7.
Nano Lett ; 23(9): 3754-3761, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094221

RESUMO

Defect engineering of van der Waals semiconductors has been demonstrated as an effective approach to manipulate the structural and functional characteristics toward dynamic device controls, yet correlations between physical properties with defect evolution remain underexplored. Using proton irradiation, we observe an enhanced exciton-to-trion conversion of the atomically thin WS2. The altered excitonic states are closely correlated with nanopore induced atomic displacement, W nanoclusters, and zigzag edge terminations, verified by scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. Density functional theory calculation suggests that nanopores facilitate formation of in-gap states that act as sinks for free electrons to couple with excitons. The ion energy loss simulation predicts a dominating electron ionization effect upon proton irradiation, providing further evidence on band perturbations and nanopore formation without destroying the overall crystallinity. This study provides a route in tuning the excitonic properties of van der Waals semiconductors using an irradiation-based defect engineering approach.

8.
Nano Lett ; 23(20): 9212-9218, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37788809

RESUMO

Optically dark excitons determine a wide range of properties of photoexcited semiconductors yet are hard to access via conventional time-resolved spectroscopies. Here, we develop a time-resolved ultrafast photocurrent technique (trPC) to probe the formation dynamics of optically dark excitons. The nonlinear nature of the trPC makes it particularly sensitive to the formation of excitons occurring at the femtosecond time scale after the excitation. As a proof of principle, we extract the interlayer exciton formation time of 0.4 ps at 160 µJ/cm2 fluence in a MoS2/MoSe2 heterostructure and show that this time decreases with fluence. In addition, our approach provides access to the dynamics of carriers and their interlayer transport. Overall, our work establishes trPC as a technique to study dark excitons in various systems that are hard to probe by other approaches.

9.
Small ; 19(18): e2205778, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732842

RESUMO

The piezo-phototronic effect shows promise with regards to improving the performance of 2D semiconductor-based flexible optoelectronics, which will potentially open up new opportunities in the electronics field. Mechanical exfoliation and chemical vapor deposition (CVD) influence the piezo-phototronic effect on a transparent, ultrasensitive, and flexible van der Waals (vdW) heterostructure, which allows the use of intrinsic semiconductors, such as 2D transition metal dichalcogenides (TMD). The latest and most promising 2D TMD-based photodetectors and piezo-phototronic devices are discussed in this review article. As a result, it is possible to make flexible piezo-phototronic photodetectors, self-powered sensors, and higher strain tolerance wearable and implantable electronics for health monitoring and generation of piezoelectricity using just a single semiconductor or vdW heterostructures of various nanomaterials. A comparison is also made between the functionality and distinctive properties of 2D flexible electronic devices with a range of applications made from 2D TMDs materials. The current state of the research about 2D TMDs can be applied in a variety of ways in order to aid in the development of new types of nanoscale optoelectronic devices. Last, it summarizes the problems that are currently being faced, along with potential solutions and future prospects.

10.
Small ; 19(29): e2300262, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029707

RESUMO

Polymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE-grown monolayer (ML) TaTe2 . This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te…Te and Ta-Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMDs.

11.
Nanotechnology ; 34(30)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37105139

RESUMO

In the quest to create effective sensors that operate at room temperature, consume less power and maintain their stability over time for detecting toxic gases in the environment, molybdenum disulfide (MoS2) and MoS2-based hybrids have emerged as potent materials. In this context, the current work describes the fabrication of Au-MoS2hybrid gas sensor fabricated on gold interdigitated electrodes (GIEs) for sensing harmful CO and NH3gases at room temperature. The GIEs-based Au-MoS2hybrid sensors are fabricated by decorating MoS2nanoflowers (MNF) with varying size of Au nanoparticles using an inert gas evaporation technique. It is observed that by varying the size of Au nanoparticles, the crystallinity gets modified, as confirmed by x-ray diffraction and Micro-Raman spectroscopy (µRS). The gas sensing measurements revealed that the best sensing response is found from the Au-MoS2hybrid (with an average particle size of 10 nm). This particular hybrid shows a 79% response to CO exposure and a 69% response to NH3exposure. The measurements are about 3.5 and 5 times higher than the bare MoS2when exposed to CO and NH3at room temperature, respectively. This enhancement in sensing response is attributed to the modified interfacial interaction between the Au nanoparticles and MNF gets improved, which leads to the formation of a Schottky barrier, as confirmed using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis. This enables the development of efficient gas sensors that respond quickly to changes in the gas around them.

12.
Environ Sci Technol ; 57(2): 939-950, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36516400

RESUMO

The aggregation-redispersion behavior of nanomaterials determines their transport, transformation, and toxicity, which could be largely influenced by the ubiquitous natural organic matter (NOM). Nonetheless, the interaction mechanisms of two-dimensional (2D) MoS2 and NOM and the subsequent influences on the redispersion behavior are not well understood. Herein, we investigated the redispersion of single-layer MoS2 (SL-MoS2) nanosheets as influenced by Suwannee River NOM (SRNOM). It was found that SRNOM played a decisive role on the redispersion of MoS2 2D nanosheets that varied distinctly from the 3D nanoparticles. Compared to the poor redispersion of MoS2 aggregates in the absence or post-addition of SRNOM to the aggregates, co-occurrence of SRNOM in the dispersion could largely enhance the redispersion and mobility of MoS2 by intercalating into the nanosheets. Upon adsorption to SL-MoS2, SRNOM enhanced the hydration force and weakened the van der Waals forces between nanosheets, leading to the redispersion of the aggregates. The SRNOM fractions with higher molecular mass imparted better dispersity due to the preferable sorption of the large molecules onto SL-MoS2 surfaces. This comprehensive study advances current understanding on the transport and fate of nanomaterials in the water system and provides fresh insights into the interaction mechanisms between NOM and 2D nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Molibdênio , Rios , Peso Molecular
13.
Nano Lett ; 22(20): 8037-8044, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36252952

RESUMO

We introduce a nanomechanical platform for fast and sensitive measurements of the spectrally resolved optical dielectric function of 2D materials. At the heart of our approach is a suspended 2D material integrated into a high Q silicon nitride nanomechanical resonator illuminated by a wavelength-tunable laser source. From the heating-related frequency shift of the resonator as well as its optical reflection measured as a function of photon energy, we obtain the real and imaginary parts of the dielectric function. Our measurements are unaffected by substrate-related screening and do not require any assumptions on the underling optical constants. This fast (τrise ∼ 135 ns), sensitive (noise-equivalent power = 90⁣pW√Hz), and broadband (1.2-3.1 eV, extendable to UV-THz) method provides an attractive alternative to spectroscopic or ellipsometric characterization techniques.

14.
Small ; 18(13): e2104216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146911

RESUMO

The interface architectures of inorganic-organic halide perovskite-based devices play key roles in achieving high performances with these devices. Indeed, the perovskite layer is essential for synergistic interactions with the other practical modules of these devices, such as the hole-/electron-transfer layers. In this work, a heterostructure geometry comprising transition-metal dichalcogenides (TMDs) of molybdenum dichalcogenides (MoX2  = MoS2 , MoSe2 , and MoTe2 ) and perovskite- or hole-transfer layers is prepared to achieve improved device characteristics of perovskite solar cells (PSCs), X-ray detectors, and photodetectors. A superior efficiency of 11.36% is realized for the active layer with MoTe2 in the PSC device. Moreover, X-ray detectors using modulated MoTe2 nanostructures in the active layers achieve 296 nA cm-2 , 3.12 mA (Gy cm2 )-1 and 3.32 × 10-4 cm2 V-1 s-1 of collected current density, sensitivity, and mobility, respectively. The fabricated photodetector produces a high photoresponsivity of 956 mA W-1 for a visible light source, with an excellent external quantum efficiency of 160% for the perovskite layer containing MoSe2 nanostructures. Density functional theory calculations are made for pure and MoX2 doped perovskites' geometrical, density of states and optical properties variations evidently. Thus, the present study paves the way for using perovskite-based devices modified by TMDs to develop highly efficient semiconductor devices.

15.
Anal Bioanal Chem ; 414(4): 1623-1630, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993596

RESUMO

Transition metal dichalcogenide (TMD) dots exhibit excellent photoluminescence performance due to the quantum confinement effect and edge effect, and are extensively applied in electronic and optical devices, sensors, catalysis, and bioimaging. In this work, WS2 quantum dots (WS2 QDs) were prepared under a simple one-step hydrothermal method by optimizing the reaction conditions, and a quantum yield of 11.23% was achieved. The as-prepared WS2 QDs possess good photo-bleaching resistance, salt tolerance, and pH stability. The fluorescence investigations showed that the WS2 QDs acted as a highly efficient fluorescent sensor to detect hemoglobin (Hb) and cardiac biomarker myoglobin (Myo). The linear range was 1-600 µg/mL for Hb and 0.01-120 µg/mL for Myo, with detection limits as low as 260 and 7.6 ng/mL, respectively. Importantly, the WS2 QDs were used to determine the Hb/Myo content in human blood/serum samples, with satisfactory results, indicating that this technique holds promise for application in clinical diagnosis associated with Hb/Myo levels. To the best of our knowledge, this is the first example of TMD QDs without any modification as a fluorescent sensor for detecting Hb and Myo simultaneously.


Assuntos
Biomarcadores/sangue , Transferência Ressonante de Energia de Fluorescência/métodos , Hemoglobinas/análise , Mioglobina/sangue , Pontos Quânticos/química , Jejum , Feminino , Fluorescência , Transferência Ressonante de Energia de Fluorescência/instrumentação , Glutationa/química , Cardiopatias/sangue , Cardiopatias/diagnóstico , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Masculino , Microscopia de Força Atômica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808190

RESUMO

Low-dimensional transition-metal dichalcogenides (TMDs) have recently emerged as promising materials for electronics and optoelectronics. In particular, photodetectors based on mono- and multilayered molybdenum disulfide (MoS2) have received much attention owing to their outstanding properties, such as high sensitivity and responsivity. In this study, photodetectors based on dispersed MoS2 nanoflakes (NFs) are demonstrated. MoS2 NFs interact with Ag nanoparticles (NPs) via low-temperature annealing, which plays a crucial role in determining device characteristics such as good sensitivity and short response time. The fabricated devices exhibited a rapid response and recovery, good photo-responsivity, and a high on-to-off photocurrent ratio under visible light illumination with an intensity lower than 0.5 mW/cm2.

17.
Nano Lett ; 21(17): 7123-7130, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410727

RESUMO

The coupled spin and valley degrees of freedom in transition metal dichalcogenides (TMDs) are considered a promising platform for information processing. Here, we use a TMD heterostructure MoS2-MoSe2 to study optical pumping of spin/valley polarized carriers across the interface and to elucidate the mechanisms governing their subsequent relaxation. By applying time-resolved Kerr and reflectivity spectroscopies, we find that the photoexcited carriers conserve their spin for both tunneling directions across the interface. Following this, we measure dramatically different spin/valley depolarization rates for electrons and holes, ∼30 and <1 ns-1, respectively, and show that this difference relates to the disparity in the spin-orbit splitting in conduction and valence bands of TMDs. Our work provides insights into the spin/valley dynamics of photoexcited carriers unaffected by complex excitonic processes and establishes TMD heterostructures as generators of spin currents in spin/valleytronic devices.

18.
Nano Lett ; 19(12): 9084-9094, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738855

RESUMO

Monolayer heterojunctions such as MoS2/WS2 are attractive for solar energy conversion applications because the interfacial electric field spatially separates charge carriers in less than 100 fs. Photoelectrochemical cells represent an intriguing platform to collect the spatially separated carriers. However, the recombination, transport, and interfacial charge transfer processes that take place following the ultrafast charge separation step have not been investigated. Here we demonstrate novel charge recombination and transport pathways in monolayer MoS2/WS2 photoelectrochemical cells by spatially resolving the net collection of carriers (i.e., the photocurrent) at the single nanosheet level. We discovered an excitation-wavelength-dependent recombination pathway that depends on the heterojunction stacking configuration and the carrier generation profile in the heterostructure. Photocurrent mapping measurements revealed that charge transport occurs parallel to the layers over micrometer-scale distances even though the indium tin oxide electrode and liquid electrolyte provide efficient charge extraction pathways via intimate electron- and hole-selective contacts. Our results reveal how composition heterogeneity influences the performance of bulk heterojunction electrodes made from randomly oriented nanosheets and provide critical insight into the design of efficient heterojunction photoelectrodes for solar energy conversion applications.

19.
Nano Lett ; 18(6): 3580-3585, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29852737

RESUMO

Spin-orbit coupling (SOC) in graphene can be greatly enhanced by proximity coupling it to transition metal dichalcogenides (TMDs) such as WSe2. We find that the strength of the acquired SOC in graphene depends on the stacking order of the heterostructures when using hexagonal boron nitride ( h-BN) as the capping layer, i.e., SiO2/graphene/WSe2/ h-BN exhibiting stronger SOC than SiO2/WSe2/graphene/ h-BN. We utilize photoluminescence (PL) as an indicator to characterize the interaction between graphene and monolayer WSe2 grown by chemical vapor deposition. We observe much stronger PL quenching in the SiO2/graphene/WSe2/ h-BN stack than in the SiO2/WSe2/graphene/ h-BN stack and, correspondingly, a much larger weak antilocalization (WAL) effect or stronger induced SOC in the former than in the latter. We attribute these two effects to the interlayer distance between graphene and WSe2, which depends on whether graphene is in immediate contact with h-BN. Our observations and hypothesis are further supported by first-principles calculations, which reveal a clear difference in the interlayer distance between graphene and WSe2 in these two stacks.

20.
Nano Lett ; 18(11): 7155-7164, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30285447

RESUMO

A novel WS2-graphite dual-ion battery (DIB) is developed by combining a conventional graphite cathode and a high-capacity few-layer WS2-flake anode. The WS2 flakes are produced by exploiting wet-jet milling (WJM) exfoliation, which allows large-scale and free-material loss production (i.e., volume up to 8 L h-1 at concentration of 10 g L-1 and exfoliation yield of 100%) of few-layer WS2 flakes in dispersion. The WS2 anodes enable DIBs, based on hexafluorophosphate (PF6-) and lithium (Li+) ions, to achieve charge-specific capacities of 457, 438, 421, 403, 295, and 169 mAh g-1 at current rates of 0.1, 0.2, 0.3, 0.4, 0.8, and 1.0 A g-1, respectively, outperforming conventional DIBs. The WS2-based DIBs operate in the 0 to 4 V cell voltage range, thus extending the operating voltage window of conventional WS2-based Li-ion batteries (LIBs). These results demonstrate a new route toward the exploitation of WS2, and possibly other transition-metal dichalcogenides, for the development of next-generation energy-storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA