RESUMO
Zellweger spectrum disorders (ZSD) are rare autosomal recessive inherited metabolic disorders and include severe (Zellweger syndrome) and milder phenotypes [neonatal adrenoleukodystrophy and infantile Refsum disease (IRD)]. ZSD are characterized by impaired peroxisomal functions and lack of peroxisomes detected by electron microscopy (EM). ZSD are caused by mutations in any of the 14 PEX genes. Patients with ZSD commonly demonstrate nonspecific hepatic symptoms within the first year, often without clinical suspicion of ZSD. Thus, recognition of pathologic findings in the liver is critical for the early diagnosis. We herein demonstrate the histologic and ultrastructural features in liver biopsies in the early and advanced phases from a 16-year-old male with IRD. The initial biopsy at 5 months of age showed a lack of peroxisomes by EM, and this finding played a critical role in the early diagnosis. In contrast, the second biopsy at 14 years of age, after long-term diet therapy, demonstrated significant disease progression with near-cirrhotic liver. In addition to lack of peroxisomes, EM revealed abundant trilamellar inclusions within large angulated lysosomes in many of the hepatocytes and Kupffer cells. Mitochondrial abnormalities were identified only in the second biopsy and were mainly identified in damaged cells; thus they were likely nonspecific secondary changes. This is the first report demonstrating histological and ultrastructural features of liver biopsies in the early and advanced phases from a child with ZSD. Trilamellar inclusions are considered to be an ultrastructural hallmark of ZSD, but they may not be apparent in the early phases.
Assuntos
Fígado/patologia , Fígado/ultraestrutura , Doença de Refsum Infantil/patologia , Síndrome de Zellweger/patologia , Adolescente , Humanos , Masculino , Microscopia Eletrônica de TransmissãoRESUMO
Duck Tembusu virus (DTMUV) is aâ¯newly emerging enveloped flavivirus. This study shows the ultrastructure of DTMUV using viral purification, negative staining and electron microscopy. Electron microscopic examinations revealed mature DTMUV particles with 50 to 75 nm in diameter and typical enveloped flavivirus structure that consists of the internal nucleocapsid, an inner layer of lipid bilayer and an external layer of E glycoprotein ectodomain. Particles appear to be mostly spherical. In particular, RNA core is deep colored and dense, both capsid and lipid bilayer are clearly visible, the capsid forms regular hexagon, and E glycoprotein ectodomain forms aâ¯fringe instead of visible spikes. Thus, this report about the clear ultrastructure of the DTMUV particles will be the major driving forces behind structural biology of DTMUV.
Assuntos
Infecções por Flavivirus/veterinária , Flavivirus/ultraestrutura , Doenças das Aves Domésticas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Patos , Flavivirus/química , Flavivirus/genética , Flavivirus/isolamento & purificação , Infecções por Flavivirus/virologia , Microscopia Eletrônica , Coloração NegativaRESUMO
Introduction: International guidelines recommend a multi-faceted approach for successful diagnoses of primary ciliary dyskinesia (PCD). In the absence of a gold standard test, a combination of genetic testing/microscopic analysis of structure and function/nasal nitric oxide measurement is used. In resource-limited settings, often none of the above tests are available, and in South Africa, only transmission electron microscopy (TEM) is available in central anatomical pathology departments. The aim of this study was to describe the clinical and ultrastructural findings of suspected PCD cases managed by pediatric pulmonologists at a tertiary-level state funded hospital in Johannesburg. Methods: Nasal brushings were taken from 14 children with chronic respiratory symptoms in keeping with a PCD phenotype. Ultrastructural analysis in accordance with the international consensus guidelines for TEM-PCD diagnostic reporting was undertaken. Results: TEM observations confirmed 43% (6) of the clinically-suspected cases (hallmark ultrastructural defects in the dynein arms of the outer doublets), whilst 57% (8) required another PCD testing modality to support ultrastructural observations. Of these, 25% (2) had neither ultrastructural defects nor did they present with bronchiectasis. Of the remaining cases, 83% (5) had very few ciliated cells (all of which were sparsely ciliated), together with goblet cell hyperplasia. There was the apparent absence of ciliary rootlets in 17% (1) case. Discussion: In resource-limited settings in which TEM is the only available testing modality, confirmatory and probable diagnoses of PCD can be made to facilitate early initiation of treatment of children with chronic respiratory symptoms.
RESUMO
Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.
RESUMO
Despite increasing use of in vivo multielectrode array (MEA) implants for basic research and medical applications, the critical structural interfaces formed between the implants and the brain parenchyma, remain elusive. Prevailing view assumes that formation of multicellular inflammatory encapsulating-scar around the implants [the foreign body response (FBR)] degrades the implant electrophysiological functions. Using gold mushroom shaped microelectrodes (gMµEs) based perforated polyimide MEA platforms (PPMPs) that in contrast to standard probes can be thin sectioned along with the interfacing parenchyma; we examined here for the first time the interfaces formed between brains parenchyma and implanted 3D vertical microelectrode platforms at the ultrastructural level. Our study demonstrates remarkable regenerative processes including neuritogenesis, axon myelination, synapse formation and capillaries regrowth in contact and around the implant. In parallel, we document that individual microglia adhere tightly and engulf the gMµEs. Modeling of the formed microglia-electrode junctions suggest that this configuration suffice to account for the low and deteriorating recording qualities of in vivo MEA implants. These observations help define the anticipated hurdles to adapting the advantageous 3D in vitro vertical-electrode technologies to in vivo settings, and suggest that improving the recording qualities and durability of planar or 3D in vivo electrode implants will require developing approaches to eliminate the insulating microglia junctions.
RESUMO
Palate development is an important morphogenetic event in facial development, including the fusion of the lateral and medial nasal portions of the frontonasal process and maxilla. Derailments of any of these events may result in cleft palate, the most frequent congenital craniofacial abnormality. Recent research has shown that the microanatomy of the miniature pig oral maxillofacial region is quite similar to that of humans, and the use of miniature pigs as a large animal model for dental and orofacial research is increasing. Little information is available, however, about the development of the miniature pig palate. Here, using histological and ultrastructural methods, we describe the developmental stages of the palate in miniature pigs. Sections from E26, E30, E35, E40, E45, and E50 embryos were stained with hematoxylin-eosin, and selected specimens were also processed for electron microscopy. The development of the miniature pig palate can be divided into four stages: growth of the bilateral palatal shelves alongside the tongue at E30; elevation of the horizontal position above the tongue at E35; establishment of bilateral shelf contact at the midline from E35-50; and a final fusion step at E50, similar to the mouse and human. The histological characteristics of the miniature pig palate at different developmental stages were synchronously verified at the ultrastructural level. Our study provides a piece of first-hand data regarding palate morphological organogenesis in the miniature pig and a foundation for further research with this model to explore mechanisms of cleft palate development. Anat Rec, 300:1409-1419, 2017. © 2017 Wiley Periodicals, Inc.