Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Glycobiology ; 31(4): 358-371, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33094324

RESUMO

The emergence of a new human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for the application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from nonmammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of nonmammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlight the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Metabolismo dos Carboidratos/efeitos dos fármacos , Lectinas/metabolismo , Polissacarídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos
2.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651356

RESUMO

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.


Assuntos
Vetores Genéticos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Respirovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Criança , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Mesocricetus , Infecções por Vírus Respiratório Sincicial/virologia , Células Vero , Proteínas Virais de Fusão/imunologia , Vírion/imunologia , Replicação Viral/imunologia
3.
Proc Natl Acad Sci U S A ; 112(14): 4471-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831500

RESUMO

Viral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131. Variability in the relative abundance of the complexes in the virion envelope correlates with differences in cell tropism exhibited between strains of HCMV. Nonetheless, the mechanisms underlying such variability have remained unclear. We have identified a viral protein encoded by the UL148 ORF (UL148) that influences the ratio of gH/gL/gO to gH/gL/UL128-131 and the cell tropism of HCMV virions. A mutant disrupted for UL148 showed defects in gH/gL/gO maturation and enhanced infectivity for epithelial cells. Accordingly, reintroduction of UL148 into an HCMV strain that lacked the gene resulted in decreased levels of gH/gL/UL128-131 on virions and, correspondingly, decreased infectivity for epithelial cells. UL148 localized to the endoplasmic reticulum, but not to the cytoplasmic sites of virion envelopment. Coimmunoprecipitation results indicated that gH, gL, UL130, and UL131 associate with UL148, but that gO and UL128 do not. Taken together, the findings suggest that UL148 modulates HCMV tropism by regulating the composition of alternative gH/gL complexes.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral , Núcleo Celular/metabolismo , Cromossomos Artificiais Bacterianos , Citomegalovirus/fisiologia , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosídeo Hidrolases/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Mutação , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vírion/metabolismo
4.
J Infect Dis ; 208(11): 1888-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908491

RESUMO

BACKGROUND: The envelope glycoprotein E2 of hepatitis C virus (HCV) contains several hypervariable regions. Interestingly, 2 regions of intragenotypic hypervariability within E2 have been described as being specific to HCV subtype 3a. Based on their amino acid position in E2, they were named HVR495 and HVR575. Here, we further investigated these regions in order to better understand their role in HCV infection. METHODS: Sequences of HCV envelope glycoproteins from Pakistani patients infected with subtype 3a were cloned and compared with other subtype 3a sequences. The entry functions and the sensitivity to antibody neutralization of selected HCV glycoprotein sequences were tested in the HCV pseudotyped particles (HCVpp) system. In addition, the cell-cultured HCV system (HCVcc) was also used to confirm some of the data obtained with the HCVpp system. RESULTS: We observed interesting new features within HVR495 and HVR575 for several subtype 3a isolates. Indeed, changes in glycosylation sites were observed with the appearance of a new glycosylation site within HVR495. Importantly, HCVpp and HCVcc that contained this new HVR495 glycosylation site were less sensitive to antibody neutralization. CONCLUSIONS: We identified a new glycosylation site within the HVR495 region of HCV subtype 3a that has a protective effect against antibody neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Linhagem Celular , Glicosilação , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/imunologia , Humanos , Mutação , Paquistão , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
5.
Viruses ; 16(2)2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38400027

RESUMO

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Assuntos
Herpesvirus Humano 1 , Humanos , Animais , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Fusão Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Vero , Internalização do Vírus , Fusão de Membrana
6.
Methods Mol Biol ; 2762: 43-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315359

RESUMO

The baculovirus/insect cell expression system is a very useful tool for reagent and antigen generation in vaccinology, virology, and immunology. It allows for the production of recombinant glycoproteins, which are used as antigens in vaccination studies and as reagents in immunological assays. Here, we describe the process of recombinant glycoprotein production using the baculovirus/insect cell expression system.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Proteínas Recombinantes , Insetos/metabolismo
7.
Viruses ; 16(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38793616

RESUMO

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Assuntos
Interferons , Proteínas de Membrana , Internalização do Vírus , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Interferons/imunologia , Interferons/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Evasão da Resposta Imune , Animais , Viroses/imunologia , Viroses/virologia , Vírus/imunologia , Vírus/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/imunologia
8.
mBio ; : e0208624, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212413

RESUMO

Guanylate-binding protein (GBP) 5 is an interferon-inducible cellular factor with broad anti-viral activity. Recently, GBP5 has been shown to antagonize the glycoproteins of a number of enveloped viruses, in part by disrupting the host enzyme furin. Here we show that GBP5 strongly impairs the infectivity of virus particles bearing not only viral glycoproteins that depend on furin cleavage for infectivity-the envelope (Env) glycoproteins of HIV-1 and murine leukemia virus and the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-but also viral glycoproteins that do not depend on furin cleavage: vesicular stomatitis virus glycoprotein and SARS-CoV S. We observe that GBP5 disrupts proper N-linked protein glycosylation and reduces the incorporation of viral glycoproteins into virus particles. The glycosylation of the cellular protein CD4 is also altered by GBP5 expression. Flow cytometry analysis shows that GBP5 expression reduces the cell-surface levels of HIV-1 Env and the S glycoproteins of SARS-CoV and SARS-CoV-2. Our data demonstrate that, under the experimental conditions used, inhibition of furin-mediated glycoprotein cleavage is not the primary anti-viral mechanism of action of GBP5. Rather, the antagonism appears to be related to impaired trafficking of glycoproteins to the plasma membrane. These results provide novel insights into the broad antagonism of viral glycoprotein function by the cellular host innate immune response. IMPORTANCE: The surface of enveloped viruses contains viral envelope glycoproteins, an important structural component facilitating virus attachment and entry while also acting as targets for the host adaptive immune system. In this study, we show that expression of GBP5 in virus-producer cells alters the glycosylation, cell-surface expression, and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into the broad impact of the host cell anti-viral factor GBP5 on protein glycosylation and trafficking.

9.
mBio ; 14(5): e0195023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37773002

RESUMO

IMPORTANCE: In order to efficiently produce infectious viral particles, HIV must counter several restrictions exerted by host cell antiviral proteins. MARCH1 is a member of the MARCH protein family that restricts HIV infection by limiting the incorporation of viral envelope glycoproteins into nascent virions. Here, we identified two regulatory RNAs, microRNAs-25 and -93, induced by the HIV-1 accessory protein Vpu, that downregulate MARCH1 mRNA. We also show that Vpu induces these cellular microRNAs in macrophages by hijacking the cellular ß-catenin pathway. The notion that HIV-1 has evolved a mechanism to counteract MARCH1 restriction on viral infectivity underlines the importance of MARCH1 in the host antiviral response.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , MicroRNAs , Humanos , Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Antivirais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Proteínas Ligadas por GPI/metabolismo
10.
Front Microbiol ; 13: 1007081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246240

RESUMO

Recognition of viral infection by pattern recognition receptors is paramount for a successful immune response to viral infection. However, an unbalanced proinflammatory response can be detrimental to the host. Recently, multiple studies have identified that the SARS-CoV-2 spike protein activates Toll-like receptor 4 (TLR4), resulting in the induction of proinflammatory cytokine expression. Activation of TLR4 by viral glycoproteins has also been observed in the context of other viral infection models, including respiratory syncytial virus (RSV), dengue virus (DENV) and Ebola virus (EBOV). However, the mechanisms involved in virus-TLR4 interactions have remained unclear. Here, we review viral glycoproteins that act as pathogen-associated molecular patterns to induce an immune response via TLR4. We explore the current understanding of the mechanisms underlying how viral glycoproteins are recognized by TLR4 and discuss the contribution of TLR4 activation to viral pathogenesis. We identify contentious findings and research gaps that highlight the importance of understanding viral glycoprotein-mediated TLR4 activation for potential therapeutic approaches.

11.
Viruses ; 13(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696506

RESUMO

Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1ß. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1ß release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.


Assuntos
Imunidade Inata/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Hepacivirus/imunologia , Humanos , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Piroptose/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Células THP-1
12.
Biomolecules ; 11(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525574

RESUMO

Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec-eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed ß-sheets (41%) as the predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation wavelength 488 nm). More than 65% of the primary structure was confirmed by mass spectrometry. Competitive BanLec-eGFP binding to high mannose glycans of the influenza vaccine (Vaxigrip®) was shown in a fluorescence-linked lectin sorbent assay (FLLSA) with monosaccharides (mannose and glucose) and wild type BanLec and H84T BanLec mutant. BanLec-eGFP exhibited binding to mannose residues on different strains of Salmonella in flow cytometry, with especially pronounced binding to a Salmonella Typhi clinical isolate. BanLec-eGFP can be a useful tool for screening high-mannose glycosylation sites on different microorganisms.


Assuntos
Escherichia coli , Proteínas de Fluorescência Verde , Lectinas , Manose , Polissacarídeos , Cristalografia por Raios X , Escherichia coli/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Lectinas/química , Manose/química , Musa/metabolismo , Peptídeos/química , Lectinas de Plantas/química , Polissacarídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
13.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727347

RESUMO

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Assuntos
Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interferons/farmacologia , Espaço Intracelular/metabolismo , Proteínas de Membrana/genética , Mutação , Vírus de RNA/classificação , Vírus de RNA/metabolismo , Especificidade da Espécie , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Replicação Viral
14.
bioRxiv ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33532773

RESUMO

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.

15.
mSphere ; 5(1)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024702

RESUMO

Herpes simplex viruses (HSVs) cause significant morbidity and mortality in humans worldwide. Herpesviruses mediate entry by a multicomponent virus-encoded machinery. Herpesviruses enter cells by endosomal low-pH and pH-neutral mechanisms in a cell-specific manner. HSV mediates cell entry via the envelope glycoproteins gB and gD and the heterodimer gH/gL regardless of pH or endocytosis requirements. Specifics concerning HSV envelope proteins that function selectively in a given entry pathway have been elusive. Here, we demonstrate that gC regulates cell entry and infection by a low-pH pathway. Conformational changes in the core herpesviral fusogen gB are critical for membrane fusion. The presence of gC conferred a higher pH threshold for acid-induced antigenic changes in gB. Thus, gC may selectively facilitate low-pH entry by regulating conformational changes in the fusion protein gB. We propose that gC modulates the HSV fusion machinery during entry into pathophysiologically relevant cells, such as human epidermal keratinocytes.IMPORTANCE Herpesviruses are ubiquitous pathogens that cause lifelong latent infections and that are characterized by multiple entry pathways. We propose that herpes simplex virus (HSV) gC plays a selective role in modulating HSV entry, such as entry into epithelial cells, by a low-pH pathway. gC facilitates a conformational change of the main fusogen gB, a class III fusion protein. We propose a model whereby gC functions with gB, gD, and gH/gL to allow low-pH entry. In the absence of gC, HSV entry occurs at a lower pH, coincident with trafficking to a lower pH compartment where gB changes occur at more acidic pHs. This report identifies a new function for gC and provides novel insight into the complex mechanism of HSV entry and fusion.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Concentração de Íons de Hidrogênio , Proteínas do Envelope Viral/química , Internalização do Vírus , Animais , Chlorocebus aethiops , Humanos , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/fisiologia
16.
J Comput Biol ; 27(10): 1495-1508, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32250657

RESUMO

Earlier analysis of the Protein Data Bank derived the distribution of rotations from the plane of a protein hydrogen bond donor peptide group to the plane of its acceptor peptide group. The quasi Boltzmann formalism of Pohl-Finkelstein is employed to estimate free energies of protein elements with these hydrogen bonds, pinpointing residues with a high propensity for conformational change. This is applied to viral glycoproteins as well as capsids, where the 90th+ percentiles of free energies determine residues that correlate well with viral fusion peptides and other functional domains in known cases and thus provide a novel method for predicting these sites of importance as antiviral drug or vaccine targets in general. The method is implemented at https://bion-server.au.dk/hbonds/ from an uploaded Protein Data Bank file.


Assuntos
Proteínas Virais/química , Biologia Computacional , Bases de Dados de Proteínas , Vírus da Encefalite Transmitidos por Carrapatos/química , Glicoproteínas/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Ligação de Hidrogênio , Vírus da Influenza A/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Modelos Estatísticos , Paramyxovirinae/química , Conformação Proteica , Estabilidade Proteica , Termodinâmica , Proteínas do Envelope Viral/química , Proteínas Virais de Fusão/química
17.
Curr Protoc Microbiol ; 53(1): e86, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31219685

RESUMO

Immunoelectron microscopy is a powerful technique for identifying viral antigens and determining their structural localization and organization within vaccines and viruses. While traditional negative staining transmission electron microscopy provides structural information, identity of components within a sample may be confounding. Immunoelectron microscopy allows for identification and visualization of antigens and their relative positions within a particulate sample. This allows for simple qualitative analysis of samples including whole virus, viral components, and viral-like particles. This article describes methods for immunogold labeling of viral antigens in a liquid suspension, with examples of immunogold-labeled influenza virus glycoproteins, and also discusses the important considerations for sample preparation and determination of morphologies. Together, these methods allow for understanding the antigenic makeup of viral particulate samples, which have important implications for molecular virology and vaccine development. © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Antígenos Virais/ultraestrutura , Microscopia Imunoeletrônica/métodos , Coloração e Rotulagem/métodos , Cultura de Vírus/métodos , Vírus/ultraestrutura , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Linhagem Celular , Vírus/química , Vírus/crescimento & desenvolvimento , Vírus/imunologia
18.
Clin Transl Immunology ; 8(8): e1073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31406574

RESUMO

Proteolytic cleavage regulates numerous processes in health and disease. One key player is the ubiquitously expressed serine protease furin, which cleaves a plethora of proteins at polybasic recognition motifs. Mammalian substrates of furin include cytokines, hormones, growth factors and receptors. Thus, it is not surprising that aberrant furin activity is associated with a variety of disorders including cancer. Furthermore, the enzymatic activity of furin is exploited by numerous viral and bacterial pathogens, thereby enhancing their virulence and spread. In this review, we describe the physiological and pathophysiological substrates of furin and discuss how dysregulation of a simple proteolytic cleavage event may promote infectious diseases and cancer. One major focus is the role of furin in viral glycoprotein maturation and pathogenicity. We also outline cellular mechanisms regulating the expression and activation of furin and summarise current approaches that target this protease for therapeutic intervention.

19.
mBio ; 10(1)2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622188

RESUMO

Rodent-to-human transmission of hantaviruses is associated with severe disease. Currently, no FDA-approved, specific antivirals or vaccines are available, and the requirement for high biocontainment (biosafety level 3 [BSL-3]) laboratories limits hantavirus research. To study hantavirus entry in a BSL-2 laboratory, we set out to generate replication-competent, recombinant vesicular stomatitis viruses (rVSVs) bearing the Gn and Gc (Gn/Gc) entry glycoproteins. As previously reported, rVSVs bearing New World hantavirus Gn/Gc were readily rescued from cDNAs, but their counterparts bearing Gn/Gc from the Old World hantaviruses, Hantaan virus (HTNV) or Dobrava-Belgrade virus (DOBV), were refractory to rescue. However, serial passage of the rescued rVSV-HTNV Gn/Gc virus markedly increased its infectivity and capacity for cell-to-cell spread. This gain in viral fitness was associated with the acquisition of two point mutations: I532K in the cytoplasmic tail of Gn and S1094L in the membrane-proximal stem of Gc. Follow-up experiments with rVSVs and single-cycle VSV pseudotypes confirmed these results. Mechanistic studies revealed that both mutations were determinative and contributed to viral infectivity in a synergistic manner. Our findings indicate that the primary mode of action of these mutations is to relocalize HTNV Gn/Gc from the Golgi complex to the cell surface, thereby affording significantly enhanced Gn/Gc incorporation into budding VSV particles. Finally, I532K/S1094L mutations in DOBV Gn/Gc permitted the rescue of rVSV-DOBV Gn/Gc, demonstrating that incorporation of cognate mutations into other hantaviral Gn/Gc proteins could afford the generation of rVSVs that are otherwise challenging to rescue. The robust replication-competent rVSVs, bearing HTNV and DOBV Gn/Gc, reported herein may also have utility as vaccines.IMPORTANCE Human hantavirus infections cause hantavirus pulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. No FDA-approved vaccines and therapeutics exist for these deadly viruses, and their development is limited by the requirement for high biocontainment. In this study, we identified and characterized key amino acid changes in the surface glycoproteins of HFRS-causing Hantaan virus that enhance their incorporation into recombinant vesicular stomatitis virus (rVSV) particles. The replication-competent rVSVs encoding Hantaan virus and Dobrava-Belgrade virus glycoproteins described in this work provide a powerful and facile system to study hantavirus entry under lower biocontainment and may have utility as hantavirus vaccines.


Assuntos
Vetores Genéticos , Proteínas Mutantes/genética , Orthohantavírus/genética , Mutação Puntual , Proteínas Recombinantes/genética , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Linhagem Celular , Glicoproteínas/genética , Humanos , Genética Reversa , Inoculações Seriadas , Vesiculovirus/fisiologia , Liberação de Vírus , Replicação Viral
20.
Adv Virus Res ; 104: 185-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31439149

RESUMO

Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (ß1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.


Assuntos
Interações Hospedeiro-Patógeno , Orthohantavírus/fisiologia , Internalização do Vírus , Pesquisa Biomédica/tendências , Ligação Proteica , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA