Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Endovasc Ther ; : 15266028241230943, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380529

RESUMO

PURPOSE: The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS: Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS: Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION: The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT: ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.

2.
Acta Radiol ; 64(2): 638-647, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35300534

RESUMO

BACKGROUND: Dual-layer spectral detector computed tomography (DLCT) may potentially improve CT arthrography through enhanced image quality and analysis of the chemical composition of tissue. PURPOSE: To evaluate the image quality of monoenergetic reconstructions from DLCT arthrography of the shoulder and assess the additional diagnostic value in differentiating calcium from iodine. MATERIAL AND METHODS: Images from consecutive shoulder DLCT arthrography examinations performed between December 2016 and February 2018 were retrospectively reviewed for hyperattenuating lesions within the labrum and tendons. The mean attenuation of the target lesion, noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the virtual monoenergetic images obtained at 40-200 keV were compared with conventional 140-kVp images. Two evaluators independently classified each target lesion as contrast media or calcification, without and with DLCT spectral data. Receiver operating curve (ROC) analysis was performed to assess the diagnostic performance of shoulder DLCT arthrography, without and with the aid of spectral data. RESULTS: The study included 20 target lesions (18 DLCT arthrography examinations of 17 patients). The SNRs of the monoenergetic images at 40-60 keV were significantly higher than those of conventional images (P < 0.05). The CNRs of the monoenergetic images at 40-70 keV were significantly higher than those of conventional images (P < 0.001). The ability to differentiate calcium from iodine, without and with DLCT spectral data, did not significantly differ (P = 0.441 and P = 0.257 for reviewers 1 and 2, respectively). CONCLUSION: DLCT had no additive value in differentiating calcium from iodine in small, hyperattenuating lesions in the labrum and tendons.


Assuntos
Cálcio , Iodo , Humanos , Artrografia , Ombro , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
3.
J Appl Clin Med Phys ; 24(10): e14062, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312288

RESUMO

OBJECTIVE: The stopping power ratio (SPR) prediction error will contribute to the range uncertainty of proton therapy. Spectral CT is promising in reducing the uncertainty in SPR estimation. The purpose of this research is to determine the optimal energy pairs of SPR prediction for each tissue and to evaluate the dose distribution and range difference between the spectral CT with the optimal energy pairs method and the single energy CT (SECT) method. METHODS: A new method was proposed based on image segmentation to calculate the proton dose with spectral CT images for the head and body phantom. CT number of each organ region were converted to SPR with the optimal energy pairs of each organ. The CT images were segmented into different organ parts with thresholding method. Virtual monoenergetic (VM) images from 70 keV to 140 keV were investigated to determine the optimal energy pairs for each organ based on Gammex 1467 phantom. The beam data of Shanghai Advanced Proton Therapy facility (SAPT) was employed in matRad (an open-source software for radiation treatment planning) for the dose calculation. RESULTS: The optimal energy pairs were obtained for each tissue. The dose distribution of two tumor sites (brain and lung) were calculated with the aforementioned optimal energy pairs. The maximum dose deviation between spectral CT and SECT at the target region was 2.57% and 0.84% for the lung tumor and brain tumor respectively. The range difference between spectral and SECT was significant with 1.8411 mm for the lung tumor. γ passing rate was 85.95% and 95.49% for the lung tumor and brain tumor with the criterion 2%/2 mm. CONCLUSIONS: This work presents a way to determine the optimal energy pairs for each organ and to calculate the dose distribution based on the more accurate SPR prediction.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Terapia com Prótons , Humanos , Prótons , Incerteza , Tomografia Computadorizada por Raios X/métodos , China , Terapia com Prótons/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia
4.
AJR Am J Roentgenol ; 218(5): 822-829, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877869

RESUMO

BACKGROUND. Epicardial adipose tissue (EAT) attenuation is a vascular inflammation marker predictive of adverse cardiac events. The fat attenuation index (FAI) assesses fat attenuation for predefined coronary segments. Photon-counting detector (PCD) CT uses routine virtual monoenergetic image (VMI) reconstructions. VMI energy level may affect EAT attenuation and FAI measurements. OBJECTIVE. The purpose of this article was to assess EAT attenuation and FAI measurements at different monoenergetic energy levels in patients undergoing coronary CTA using a first-generation whole-body dual-source PCD CT scanner. METHODS. An anthropomorphic phantom at two sizes with a fat insert was imaged on a first-generation dual-source PCD CT scanner and, as a reference, on a conventional energy-integrating detector (EID) CT scanner at 120 kV. Thirty patients (11 women, 19 men; mean age, 48 ± 10 years; Agatston score < 60) who underwent an ECG-gated unenhanced calcium-scoring scan and contrast-enhanced coronary CTA by PCD CT were retrospectively evaluated. VMIs from 55 to 80 keV at 5-keV increments were reconstructed. EAT attenuation was manually measured on unenhanced and contrast-enhanced images. FAI was calculated using semiautomated software. RESULTS. The attenuation of the phantom fat insert was -69 HU for the reference EID CT; the closest attenuation for PCD CT was observed at 70 keV for the small (-69 HU) and large (-70 HU) phantoms. In patients, EAT attenuation increased for unenhanced acquisition from -111 ± 11 HU at 55 keV to -82 ± 9 HU at 80 keV and for contrast-enhanced acquisition from -104 ± 11 HU at 55 keV to -81 ± 9 HU at 80 keV. The mean attenuation difference between unenhanced and contrast-enhanced scans decreased with increasing energy level (from 7 ± 12 HU to 1 ± 10 HU). The FAI increased from -89 ± 8 HU at 55 keV to -77 ± 12 HU at 80 keV for the right coronary artery, -95 ± 11 HU at 55 keV to -85 ± 11 HU at 80 keV for the left anterior descending artery, and -87 ± 10 HU at 55 keV to -80 ± 12 HU at 80 keV for the circumflex artery. CONCLUSION. EAT attenuation and FAI measurements using PCD CT are impacted by VMI energy level and contrast enhancement. Use of VMI reconstruction at 70 keV provides fat attenuation approximating conventional polychromatic measurements. CLINICAL IMPACT. The findings may help standardize evaluation of pericoronary inflammation by PCD CT as a measure of patients' cardiac risk.


Assuntos
Tecido Adiposo , Tomografia Computadorizada por Raios X , Tecido Adiposo/diagnóstico por imagem , Adulto , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
BMC Med Imaging ; 21(1): 185, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861843

RESUMO

BACKGROUND: This retrospective study aimed to investigate the usefulness of the optimized kiloelectron volt (keV) for virtual monoenergetic imaging (VMI) combined with iodine map in dual-energy computed tomography enterography (DECTE) in the diagnosis of Crohn's disease (CD). METHODS: Seventy-two patients (mean age: 41.89 ± 17.28 years) with negative computed tomography enterography (CTE) were enrolled for investigating the optimized VMI keV in DECTE by comparing subjective and objective parameters of VMIs that were reconstructed from 40 to 90 keV. Moreover, 68 patients (38.27 ± 15.10 years; 35 normal and 33 CD) were included for evaluating the diagnostic efficacy of DECTE iodine map at the optimized VMI energy level and routine CTE for CD and active CD. Statistical analysis for all data was conducted. RESULTS: Objective and subjective imaging evaluations showed the best results at 60 keV for VMIs. The CT values of the normal group, active subgroup, and CD group during the small intestinal phase at routine 120 kVp or 60 keV VMI had significant differences. The diagnostic efficacy of an iodine map was the best when NIC = 4% or fat value = 45.8% for CD, whereas NIC < 0.35 or the fat value < 0.38 for active CD. The combined routine CTE and optimized VMI improved the diagnostic efficacy (P < 0.001). CONCLUSIONS: VMI at 60 keV provided the best imaging quality on DECTE. NIC and fat value provided important basis for active CD evaluation. Routine CTE combined with VMI at 60 keV improved the diagnostic efficiency for CD.


Assuntos
Doença de Crohn/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
6.
Acta Radiol ; 61(12): 1618-1627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32429673

RESUMO

BACKGROUND: The utility of virtual monoenergetic imaging (VMI) for fine arteries has not been well clarified. PURPOSE: To assess bronchial artery visualization using VMI and noise-optimized advanced VMI (VMI+). MATERIAL AND METHODS: Eighty-seven patients with esophageal cancer underwent computed tomography (CT) using a third-generation dual-source system before surgery. Tube voltages were set to 90 kVp and 150 kVp, respectively. Images were reconstructed using VMI and VMI+ with energy levels of 40-120 keV (in 10-keV increments); composite images equivalent to CT images at 105 kVp were also generated. The CT attenuation value and contrast-to-noise ratio (CNR) of bronchial arteries using VMI and VMI+ were compared with those obtained using composite imaging. Two radiologists subjectively analyzed bronchial artery visualization with reference to the composite image. RESULTS: CT attenuation values for bronchial arteries using VMI at 40-60 keV and VMI+ at 40 keV and 50 keV were significantly higher than those obtained using composite imaging (P < 0.05). CNR using VMI at 40-60 keV was significantly higher than that obtained using composite imaging (P < 0.05), whereas no differences were noted for values obtained using composite imaging between VMI+ at 40 keV and 50 keV. In the subjective analysis, VMI at 40 keV and 50 keV yielded significantly better visibility of bronchial arteries than VMI+ (P < 0.05). CONCLUSION: VMI and VMI+ at low voltages (40-50 keV) may be useful for bronchial artery visualization. VMI+ may be less effective for fine vessels as bronchial artery visualization.


Assuntos
Artérias Brônquicas/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Neoplasias Esofágicas/diagnóstico por imagem , Feminino , Humanos , Iohexol , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos
7.
J Appl Clin Med Phys ; 21(8): 272-277, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32614147

RESUMO

Three-dimensional computed tomographic angiography (3D-CTA) is widely used to evaluate the inner diameters of vessels and the anatomical vascular structure prior to endoscopic aortic surgery or transcatheter valve implantation. Virtual monoenergetic imaging (VMI) is a new application in dual-energy CT (DECT). We evaluated the potential for contrast dose reduction in preoperative aortic CTA using VMI. To evaluate performance in terms of image quality and vessel shape, we quantified the contrast-to-noise ratio (CNR) and the vessel diameter using a cylinder phantom we developed, and used volume rendering to assess visual quality. All VMI had improved CNR values compared with conventional 120 kVp images at an iodine content of 15 mgI/mL. In each image, a virtual mono-energy of 40 keV yielded the highest CNR value, and an iodine content of 9 mgI/mL was comparable to that of conventional images with an iodine content of 15 mgI/mL. The circularity indices (CI) of the vascular model at 15, 12, and 9 mgI/mL were similar to those of the reference condition using conventional voltages; however, CI was degraded at iodine contents of 6 and 3 mgI/mL with VMI. In the case of iodine content of 15 mgI/mL, VMI was superior, with conventional image by visual evaluation. In the cases of iodine contents of 12 and 9 mgI/mL, image quality was judged to be almost the same level when comparing 12 and 9 mgI/mL to conventional images. In the case of 6 and 3 mgI/mL, reference image using conventional technique was superior to that of VMI. We demonstrated in that decreasing contrast iodine content is possible using VMI with an energy of 40 keV for preoperative aortic 3D-CTA.


Assuntos
Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Angiografia , Angiografia por Tomografia Computadorizada , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X
8.
Radiol Med ; 125(4): 384-397, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31925704

RESUMO

Unlike conventional computed tomography, dual-energy computed tomography is a relatively novel technique that exploits ionizing radiations at different energy levels. The separate radiation sets can be achieved through different technologies, such as dual source, dual layers or rapid switching voltage. Body tissue molecules vary for their specific atomic numbers and electron density, and the interaction with different sets of radiations results in different attenuations, allowing to their final distinction. In particular, iodine recognition and quantification have led to important information about intravenous contrast medium delivery within the body. Over the years, useful post-processing algorithms have also been validated for improving tissue characterization. For instance, contrast resolution improvement and metal artifact reduction can be obtained through virtual monoenergetic images, dose reduction by virtual non-contrast reconstructions and iodine distribution highlighting through iodine overlay maps. Beyond the evaluation of the abdominal organs, dual-energy computed tomography has also been successfully employed in other anatomical districts. Although lung perfusion is one of the most investigated, this evaluation has been extended to narrowly fields of application, such as musculoskeletal, head and neck, vascular and cardiac. The potential pool of information provided by dual-energy technology is already wide and not completely explored, yet. Therefore, its performance continues to raise increasing interest from both radiologists and clinicians.


Assuntos
Extremidades/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem , Humanos
9.
Emerg Radiol ; 26(4): 419-425, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30963313

RESUMO

PURPOSE: To evaluate the utility of virtual monoenergetic imaging in assessing hepatic and splenic lacerations and to determine the optimal energy level to maximize injury contrast-to-noise ratio. METHODS: We retrospectively examined 49 contrast-enhanced abdominal CT studies performed on a dual-source dual-energy CT (DECT) scanner with reported liver and/or splenic lacerations. All studies included portal venous phase imaging acquired simultaneously at low (80 or 100 kVp) and high (140 kVp with tin filtration) energy levels. Conventional 120 kVp-equivalent images were generated for routine review by blending the low and high energy acquisitions. Virtual monoenergetic reconstructions were retrospectively generated in 10 keV increments from 40 to 90 keV. Liver or splenic laceration attenuation, background parenchymal attenuation, and noise were measured on each set of monoenergetic and conventional images. Injury-to-parenchyma contrast and contrast-to-noise ratios (CNR) were calculated. Differences between CNR of monoenergetic series and conventional images were assessed with a paired t test. RESULTS: Liver laceration was identified in 28 patients, and splenic laceration in 22 patients. Background noise was lower at higher monoenergetic levels, with the lowest noise seen at 90 keV, less than that of conventional images (stddev 8.0 for 90 keV and 8.5 for conventional based on noise of uninjured liver/spleen parenchyma, p < 0.001). For both liver and splenic lacerations, injury-to-parenchyma contrast was greater at lower monoenergetic levels, with maximum at 40 keV. Contrast at 40-70 keV was significantly greater than that of conventional images (p < 0.001). Injury-to parenchyma CNR was also greater at 40-70 keV than that of conventional images and with statistical significance. CNR was highest at 40 keV for both liver (6.5 for 40 keV and 5.4 for conventional, p < 0.001) and splenic lacerations (7.5 vs. 5.8, p < 0.001). CONCLUSIONS: DECT virtual monoenergetic imaging at low keV improves injury-to-parenchyma CNR of hepatic and splenic lacerations compared with traditional polyenergetic reconstructions. Specially, the optimal energy level for assessing both was 40 keV.


Assuntos
Lacerações/diagnóstico por imagem , Fígado/lesões , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Baço/lesões , Tomografia Computadorizada por Raios X/métodos , Adulto , Meios de Contraste , Feminino , Humanos , Iohexol , Iopamidol , Masculino , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
10.
Eur Radiol ; 28(8): 3405-3412, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29460070

RESUMO

OBJECTIVES: To compare image quality and radiation dose of abdominal split-filter dual-energy CT (SF-DECT) combined with monoenergetic imaging to single-energy CT (SECT) with automatic tube voltage selection (ATVS). METHODS: Two-hundred single-source abdominal CT scans were performed as SECT with ATVS (n = 100) and SF-DECT (n = 100). SF-DECT scans were reconstructed and subdivided into composed images (SF-CI) and monoenergetic images at 55 keV (SF-MI). Objective and subjective image quality were compared among single-energy images (SEI), SF-CI and SF-MI. CNR and FOM were separately calculated for the liver (e.g. CNRliv) and the portal vein (CNRpv). Radiation dose was compared using size-specific dose estimate (SSDE). Results of the three groups were compared using non-parametric tests. RESULTS: Image noise of SF-CI was 18% lower compared to SEI and 48% lower compared to SF-MI (p < 0.001). Composed images yielded higher CNRliv over single-energy images (23.4 vs. 20.9; p < 0.001), whereas CNRpv was significantly lower (3.5 vs. 5.2; p < 0.001). Monoenergetic images overcame this inferiority in CNRpv and achieved similar results compared to single-energy images (5.1 vs. 5.2; p > 0.628). Subjective sharpness was equal between single-energy and monoenergetic images and diagnostic confidence was equal between single-energy and composed images. FOMliv was highest for SF-CI. FOMpv was equal for SEI and SF-MI (p = 0.78). SSDE was significant lower for SF-DECT compared to SECT (p < 0.022). CONCLUSIONS: The combined use of split-filter dual-energy CT images provides comparable objective and subjective image quality at lower radiation dose compared to single-energy CT with ATVS. KEY POINTS: • Split-filter dual-energy results in 18% lower noise compared to single-energy with ATVS. • Split-filter dual-energy results in 11% lower SSDE compared to single-energy with ATVS. • Spectral shaping of split-filter dual-energy leads to an increased dose-efficiency.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos , Razão Sinal-Ruído , Adulto Jovem
11.
AJR Am J Roentgenol ; 210(4): 734-741, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446668

RESUMO

OBJECTIVE: The objective of our study was to evaluate the quality of virtual monoenergetic imaging (VMI) from dual-layer detector spectral CT and the effect of virtual monoenergetic images obtained at low energies on the detection of pulmonary embolism (PE) in patients with a suboptimally enhanced pulmonary artery on chest CT. MATERIALS AND METHODS: Of 1552 consecutive chest CT examinations performed with dual-layer detector spectral CT using a routine protocol with a tube voltage of 120 kVp, 79 examinations with suboptimal enhancement of the pulmonary artery (i.e., mean attenuation of pulmonary artery ≤ 180 HU) were included. The mean attenuation of the pulmonary artery, noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of virtual monoenergetic images obtained at 40-200 keV were compared with those of the conventional 120-kVp images. The virtual monoenergetic images with the best CNR were compared with the 120-kVp images with regard to subjective image quality and diagnostic accuracy for detecting PE. RESULTS: Sufficient attenuation of the pulmonary artery (> 180 HU) was obtained using VMI for 78 of the 79 examinations. The noise levels of the virtual monoenergetic images were gradually increased with decreasing energy level (i.e., kiloelectron volt setting). The CNR and SNR of virtual monoenergetic images at 40-65 keV were significantly higher (both, p < 0.001) than the CNR and SNR of the 120-kVp images. The CNR was the highest at 40 keV for all cases. Diagnostic accuracy for detecting PE was significantly higher for 40-keV images (reader 1: AUC = 0.992, p = 0.033; reader 2: AUC = 0.986, p = 0.043) than for 120-kVp images (reader 1, AUC = 0.911; reader 2, AUC = 0.933). The subjective quality was not different between these two images. CONCLUSION: In chest CT examinations in which the pulmonary artery is suboptimally enhanced, obtaining virtual monoenergetic images at a low energy setting using dual-layer detector spectral CT allows sufficient attenuation of the pulmonary artery to be achieved while preserving image quality and increasing diagnostic performance for detecting PE.


Assuntos
Artéria Pulmonar/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiografia por Tomografia Computadorizada , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Sensibilidade e Especificidade , Razão Sinal-Ruído
12.
Abdom Radiol (NY) ; 49(1): 103-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37796327

RESUMO

PURPOSE: To analyze the conspicuity of pancreatic ductal adenocarcinoma (PDAC) in virtual monoenergetic images (VMI) on a novel photon-counting detector CT (PCD-CT) in comparison to energy-integrating CT (EID-CT). METHODS: Inclusion criteria comprised initial diagnosis of PDAC (reference standard: histopathological analysis) and standardized contrast-enhanced CT imaging either on an EID-CT or a PCD-CT. Patients were excluded due to different histopathological diagnosis or missing tumor delineation on CT. On the PCD-CT, 40-190 keV VMI reconstructions were generated. Image noise, tumor-to-pancreas ratio (TPR) and contrast-to-noise ratio (CNR) were analyzed by ROI-based measurements in arterial and portal venous contrast phase. Two board-certified radiologist evaluated image quality and tumor delineation at both, EID-CT and PCD-CT (40 and 70 keV). RESULTS: Thirty-eight patients (mean age 70.4 years ± 10.3 [range 45-91], 27 males; PCD-CT: n=19, EID-CT: n=19) were retrospectively included. On the PCD-CT, tumor conspicuity (reflected by low TPR and high CNR) was significantly improved at low-energy VMI series (≤ 70 keV compared to > 70 keV), both in arterial and in portal venous contrast phase (P < 0.001), reaching the maximum at 40 keV. Comparison between PCD-CT and EID-CT showed significantly higher CNR on the PCD-CT in portal venous contrast phase at < 70 keV (P < 0.016). On the PCD-CT, tumor conspicuity was improved in portal venous contrast phase compared to arterial contrast phase especially at the lower end of the VMI spectrum (≤ 70 keV). Qualitative analysis revealed that tumor delineation is improved in 40 keV reconstructions compared to 70 keV reconstructions on a PCD-CT. CONCLUSION: PCD-CT VMI reconstructions (≤ 70 keV) showed significantly improved conspicuity of PDAC in quantitative and qualitative analysis in both, arterial and portal venous contrast phase, compared to EID-CT, which may be important for early detection of tumor tissue in clinical routine. Tumor delineation was superior in portal venous contrast phase compared to arterial contrast phase.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Masculino , Humanos , Idoso , Estudos Retrospectivos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Carcinoma Ductal Pancreático/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
13.
Diagnostics (Basel) ; 14(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535045

RESUMO

OBJECTIVES: The aim of this study was to analyze the extent of dental metal artifacts in virtual monoenergetic (VME) images, as they often compromise image quality by obscuring soft tissue affecting vascular attenuation reducing sensitivity in the detection of dissections. METHODS: Neck photon-counting CT datasets of 50 patients undergoing contrast-enhanced trauma CT were analyzed. Hyperattenuation and hypoattenuation artifacts, muscle with and without artifacts and vessels with and without artifacts were measured at energy levels from 40 keV to 190 keV. The corrected artifact burden, corrected image noise and artifact index were calculated. We also assessed subjective image quality on a Likert-scale. RESULTS: Our study showed a lower artifact burden and less noise in artifact-affected areas above the energy levels of 70 keV for hyperattenuation artifacts (conventional polychromatic CT images 1123 ± 625 HU vs. 70 keV VME 1089 ± 733 HU, p = 0.125) and above of 80 keV for hypoattenuation artifacts (conventional CT images -1166 ± 779 HU vs. 80 keV VME -1170 ± 851 HU, p = 0.927). Vascular structures were less hampered by metal artifacts than muscles (e.g., corrected artifact burden at 40 keV muscle 158 ± 125 HU vs. vessels -63 ± 158 HU p < 0.001), which was also reflected in the subjective image assessment, which showed better ratings at higher keV values and overall better ratings for vascular structures than for the overall artifact burden. CONCLUSIONS: Our research suggests 70 keV might be the best compromise for reducing metal artifacts affecting vascular structures and preventing vascular contrast if solely using VME reconstructions. VME imaging shows only significant effects on the general artifact burden. Vascular structures generally experience fewer metal artifacts than soft tissue due to their greater distance from the teeth, which are a common source of such artifacts.

14.
Cancers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539562

RESUMO

This study investigated whether virtual monoenergetic images (VMIs) and iodine mapping based on dual-energy CT (DECT) provide advantages in the assessment of endometrial cancer. A dual-source DECT was performed for primary staging of histologically proven endometrioid adenocarcinoma in 21 women (66.8 ± 12.0 years). In addition to iodine maps, VMIs at 40, 50, 60, 70, and 80 keV were reconstructed from polyenergetic images (PEIs). Objective analysis comprised the measurement of tumor contrast, contrast-to-noise ratio, and normalized iodine concentration (NIC). In addition, three radiologists independently rated tumor conspicuity. The highest tumor contrast (106.6 ± 45.0 HU) and contrast-to-noise ratio (4.4 ± 2.0) was established for VMIs at 40 keV. Tumor contrast in all VMIs ≤ 60 keV was higher than in PEIs (p < 0.001). The NIC of malignant tissue measured in iodine maps was substantially lower compared with a healthy myometrium (0.3 ± 0.1 versus 0.6 ± 0.1 mg/mL; p < 0.001). Tumor conspicuity was highest in 40 keV datasets, whereas no difference was found among PEIs and VMIs at 60 and 70 keV (p ≥ 0.334). Interobserver agreement was good, indicated by an intraclass correlation coefficient of 0.824 (0.772-0.876; p < 0.001). In conclusion, computation of VMIs at 40 keV and color-coded iodine maps aids the assessment of endometroid adenocarcinoma in primary staging.

15.
Diagnostics (Basel) ; 14(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535047

RESUMO

BACKGROUND: Photon-counting detector (PCD) computed tomography (CT) allows for the reconstruction of virtual monoenergetic images (VMI) at different thresholds. OBJECTIVE: The aim of our study was to evaluate the optimal arterial contrast in portal venous (pv) scans regarding objective parameters and subjective image quality for different virtual keV levels. METHODS: We identified 40 patients that underwent a CT scan with an arterial and pv phase on a PCD-CT (NAEOTOM alpha, Siemens Healthineers, Forchheim, Germany). The attenuation of abdominal arteries on pv phases was measured for different virtual keV levels in a monoenergetic+ application profile and for polychromatic (pc) arterial images. Two independent readers assessed subjective image quality, including vascular contrast in pv scans at different energy levels. Additionally, signal- and contrast-to-noise ratios (SNR and CNR) were measured. RESULTS: Our results showed increasing arterial attenuation levels with decreasing energy levels in virtual monoenergetic imaging on pv scans with the highest attenuation at 40 keV, significantly higher than in the pc arterial phase (439 ± 97 HU vs. 360 ± 97, p < 0.001). Noise, SNR, and CNR were worse at this energy level (p < 0.001). Pv VMI showed less noise at energy levels above 70 keV (all p < 0.001). Subjective image quality was rated best at 70 keV, vascular contrast was best at 40 keV. CONCLUSIONS: Our research suggests that virtual monoenergetic images at 40 keV in Mono+ mode derived from a PCD-CT can be a feasible alternative to a true arterial phase for assessment of vessels with worse CNR and SNR.

16.
J Clin Med ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38673712

RESUMO

Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard CT systems achievable with the specialized cone-beam CT. PCCT can offer up to 100 µm resolution, improve soft-tissue contrast, and provide faster scanning times, which are crucial for detailed dental diagnosis and treatment planning. Using semiconductor detectors, PCCT produces sharper images and can potentially reduce the number of scans required, thereby decreasing patient radiation exposure. This review aimed to explore the potential benefits of PCCT in dental imaging. Methods: This review analyzed the literature on PCCT in dental imaging from January 2010 to February 2024, sourced from PubMed, Scopus, and Web of Science databases, focusing on high-resolution, patient safety, and diagnostic efficiency in dental structure assessment. We included English-language articles, case studies, letters, observational studies, and randomized controlled trials while excluding duplicates and studies unrelated to PCCT's application in dental imaging. Results: Studies have highlighted the superiority of PCCT in reducing artifacts, which are often problematic, compared to conventional CBCT and traditional CT scans, due to metallic dental implants, particularly when used with virtual monoenergetic imaging and iterative metal artifact reduction, thereby improving implant imaging. This review acknowledges limitations, such as the potential for overlooking other advanced imaging technologies, a narrow study timeframe, the lack of real-world clinical application data in this field, and costs. Conclusions: PCCT represents a promising advancement in dental imaging, offering high-resolution visuals, enhanced contrast, and rapid scanning with reduced radiation exposure.

17.
Br J Radiol ; 97(1158): 1180-1190, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38597871

RESUMO

OBJECTIVES: We propose a deep learning (DL) multitask learning framework using convolutional neural network for a direct conversion of single-energy CT (SECT) to 3 different parametric maps of dual-energy CT (DECT): virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED). METHODS: We propose VMI-Net for conversion of SECT to 70, 120, and 200 keV VMIs. In addition, EAN-Net and RED-Net were also developed to convert SECT to EAN and RED. We trained and validated our model using 67 patients collected between 2019 and 2020. Single-layer CT images with 120 kVp acquired by the DECT (IQon spectral CT; Philips Healthcare, Amsterdam, Netherlands) were used as input, while the VMIs, EAN, and RED acquired by the same device were used as target. The performance of the DL framework was evaluated by absolute difference (AD) and relative difference (RD). RESULTS: The VMI-Net converted 120 kVp SECT to the VMIs with AD of 9.02 Hounsfield Unit, and RD of 0.41% compared to the ground truth VMIs. The ADs of the converted EAN and RED were 0.29 and 0.96, respectively, while the RDs were 1.99% and 0.50% for the converted EAN and RED, respectively. CONCLUSIONS: SECT images were directly converted to the 3 parametric maps of DECT (ie, VMIs, EAN, and RED). By using this model, one can generate the parametric information from SECT images without DECT device. Our model can help investigate the parametric information from SECT retrospectively. ADVANCES IN KNOWLEDGE: DL framework enables converting SECT to various high-quality parametric maps of DECT.


Assuntos
Redes Neurais de Computação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Aprendizado Profundo
18.
Acad Radiol ; 31(6): 2501-2510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135625

RESUMO

RATIONALE AND OBJECTIVES: To investigate the feasibility of virtual monochromatic imaging (VMI) of dual-layer spectral detector computed tomography (SDCT) to reduce iodinated contrast material (CM) and radiation dose in craniocervical computed tomography angiography (CTA). MATERIALS AND METHODS: A total of 280 consecutively selected patients performed craniocervical CTA with SDCT were prospectively selected and randomly divided into four groups (A, DoseRight index (DRI) 31, iopromide 370mgI/mL, volume 0.8 mL/kg; B, DRI 26, iopromide 370mgI/mL, volume 0.4 mL/kg; C, DRI 26, ioversol 320mgI/mL, volume 0.4 mL/kg; D, DRI 26, iohexol 300mgI/mL, volume 0.4 mL/kg). 50-70 kiloelectron volts (keV) VMIs in group B were reconstructed and compared to group A to select the optimal keV. Then, the optimal keV in groups B, C and D was reconstructed and compared. Objective image quality, including vascular attenuation, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), was evaluated. Subjective image quality was assessed using a 5-point Likert scale. In addition, the effective dose (ED), iodine load and iodine delivery rate (IDR) were compared between groups A and D. RESULTS: 55 keV VMI was the optimal VMI in group B. The objective and subjective image quality of 55 keV VMI in group B were equal to or better than those of the CI in group A. The SNR, CNR and subjective image quality in group D were similar to those in group B (P > 0.05). The ED, iodine load and IDR of group D were reduced by 44%, 59% and 19%, respectively, when compared to those of group A. CONCLUSION: Low dose iodinated CM and radiation for 55 keV VMI in craniocervical CTA using SDCT could still provide equivalent or better image quality than the conventional scanning protocol.


Assuntos
Angiografia por Tomografia Computadorizada , Meios de Contraste , Estudos de Viabilidade , Iohexol , Doses de Radiação , Humanos , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada/métodos , Iohexol/análogos & derivados , Idoso , Ácidos Tri-Iodobenzoicos , Adulto , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos
19.
J Clin Med ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064110

RESUMO

Dual-Energy computed tomography (DECT) with its various advanced techniques, including Virtual Non-Contrast (VNC), effective atomic number (Z-eff) calculation, Z-maps, Iodine Density Index (IDI), and so on, holds great promise in the diagnosis and management of urogenital tumours. In this narrative review, we analyze the current status of knowledge of this technology to provide better lesion characterization, improve the staging accuracy, and give more precise treatment response assessments in relation to urological tumours.

20.
Diagnostics (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238274

RESUMO

BACKGROUND: Type 2 diabetes mellitus (DM) is the most common metabolic disorder in the world and an important risk factor for peripheral arterial disease (PAD). CT angiography represents the method of choice for the diagnosis, pre-operative planning, and follow-up of vascular disease. Low-energy dual-energy CT (DECT) virtual mono-energetic imaging (VMI) has been shown to improve image contrast, iodine signal, and may also lead to a reduction in contrast medium dose. In recent years, VMI has been improved with the use of a new algorithm called VMI+, able to obtain the best image contrast with the least possible image noise in low-keV reconstructions. PURPOSE: To evaluate the impact of VMI+ DECT reconstructions on quantitative and qualitative image quality in the evaluation of the lower extremity runoff. MATERIALS AND METHODS: We evaluated DECT angiography of lower extremities in patients suffering from diabetes who had undergone clinically indicated DECT examinations between January 2018 and January 2023. Images were reconstructed with standard linear blending (F_0.5) and low VMI+ series were generated from 40 to 100 keV, in an interval of 15 keV. Vascular attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated for objective analysis. Subjective analysis was performed using five-point scales to evaluate image quality, image noise, and diagnostic assessability of vessel contrast. RESULTS: Our final study cohort consisted of 77 patients (41 males). Attenuation values, CNR, and SNR were higher in 40-keV VMI+ reconstructions compared to the remaining VMI+ and standard F_0.5 series (HU: 1180.41 ± 45.09; SNR: 29.91 ± 0.99; CNR: 28.60 ± 1.03 vs. HU 251.32 ± 7.13; SNR: 13.22 ± 0.44; CNR: 10.57 ± 0.39 in standard F_0.5 series) (p < 0.0001). Subjective image rating was significantly higher in 55-keV VMI+ images compared to the other VMI+ and standard F_0.5 series in terms of image quality (mean score: 4.77), image noise (mean score: 4.39), and assessability of vessel contrast (mean value: 4.57) (p < 0.001). CONCLUSIONS: DECT 40-keV and 55-keV VMI+ showed the highest objective and subjective parameters of image quality, respectively. These specific energy levels for VMI+ reconstructions could be recommended in clinical practice, providing high-quality images with greater diagnostic suitability for the evaluation of lower extremity runoff, and potentially needing a lower amount of contrast medium, which is particularly advantageous for diabetic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA