Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(40): 17908-17915, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39344972

RESUMO

Resistant bacteria have always been of research interest worldwide. In the urban water system, the increased disinfectant usage gives more chances for undesirable disinfection-resistant bacteria. As the strongest oxidative disinfectant in large-scale water treatment, ozone might select ozone-resistant bacteria (ORB), which, however, have rarely been reported and are inexplicit for their resistant mechanisms and physiological characteristics. In this study, six strains of ORB were screened from a water reclamation plant in Beijing. Three of them (O7, CR19, and O4) were more resistant to ozone than all previously reported ORB or even spores. The ozone consumption capacity of extracellular polymeric substances and cell walls was proved to be the main sources of bacterial ozone resistance, rather than intracellular antioxidant enzymes. The transcriptome results elucidated that strong ORB possessed a combined antioxidant mechanism consisting of the enhanced transcription of protein synthesis, protein export, and polysaccharide export genes (LptF, LptB, NodJ, LivK, LviG, MetQ, MetN, and GltU). This study confirmed the existence of ORB in urban water systems and brought doubts to the idea of a traditional control strategy against chlorine-resistant bacteria. A salient "trade-off" effect between the ozone resistance and propagation ability indicated the weakness and potential control approaches of ORB.


Assuntos
Bactérias , Ozônio , Purificação da Água , Ozônio/farmacologia , Bactérias/efeitos dos fármacos , Desinfetantes/farmacologia , Desinfecção
2.
J Environ Manage ; 370: 122597, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303586

RESUMO

Livestock slurry has gathered significant interest as a secondary raw material for fertilisers industry due to its content on macronutrients -nitrogen, phosphorous, and potassium- and organic carbon. In this study, the performance of an on-site pilot plant composed by microfiltration, membrane-assisted stripping, and reverse osmosis for selective recovery of nitrogen as fertiliser and water reclamation was demonstrated for 2 years in a pig farm, referenced to 8 batches for seasonal assessment. Microfiltration mitigated the seasonal variation in the composition of pig slurry leading to stable process efficiency in the following steps. Membrane-assisted stripping resulted in the recovery of up to 56% of nitrogen as high-purity ammonium sulphate, and up to 42% of reclaimed water as reverse osmosis permeate. The proposed train of technologies reported proper performance and robustness during the whole demonstration period as it resulted in the production of reclaimed water and ammonium sulphate with no significant quality variations. The energy cost for both products obtained in this study was found in the average of the previous works reviewed with 12.49 kWh kg-1 NH3 produced, and 0.37 kWh m-3 of reclaimed water. The environmental assessment showed that nitrogen losses could be reduced by up to 90 kg N ha-1 d-1 by replacing manure spreading with precise fertilisation techniques, enabled by the selective recovery of nitrogen from SLF. Finally, the financial study showed that the scaling up of the proposed train of technologies would result in benefits for farms with more than 1600 pig heads.

3.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626647

RESUMO

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

4.
Appl Microbiol Biotechnol ; 106(7): 2763-2773, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294588

RESUMO

This study investigated the microbial community structure and composition across two treatment steps used in advanced water reclamation for potable reuse applications, namely Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF) and Ozone-Biological Activated Carbon filtration (O3/BAC). The study examined the richness, variations, and similarities of the microorganisms involved at each treatment step to better understand the role of ecology and the dynamics on unit process performance and the microbial community developed within it. The bacterial microbiomes at each treatment step were independently characterized using 16S metagenomic sequencing. Combining both treatment steps, a total of 3801 species were detected. From the total species detected, 38% and 98% were identified at CFCGMF and O3/BAC, respectively. The most abundant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes in both treatment steps. The identified species were classified based on their preferences to free-living style (59%) vs attached-living style (22%) showing a relatively low richness in the BAC media, but higher diversities. At the taxonomic class level, Betaproteobacteria was the predominant in both system processes. Additionally, a list of eight genera were identified as potential bacterial pathogens present in both process effluents. They are Aeromonas, Clostridium, Enterobacter, Escherichia, Flavobacterium, Legionella, Mycobacterium, and Pseudomonas. CFCGMF effluent yielded less pathogenic bacteria than both the ozone and BAC filter effluent from the O3/BAC process unit; their relative abundance accounted for about 2% and 8% for CFCGMF and O3/BAC, respectively. Detailed studies to characterize the microbial communities are crucial in interpreting the mechanisms and synergies between processes performance and microorganisms by identifying the needs and best practices to ensure public health protection. Key points • Microbial communities of two treatment processes are characterized using 16S rRNA sequencing. • Organisms that can tolerate ozone and form biofilms define microbial community in subsequent biofilters. • In relatively low abundances, potential pathogenic bacteria are detected in the treated water.


Assuntos
Água Potável , Microbiota , Ozônio , Purificação da Água , Bactérias/genética , Água Potável/microbiologia , RNA Ribossômico 16S/genética
5.
J Environ Manage ; 317: 115392, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636106

RESUMO

Climate change and water scarcity are clearly related environmental problems, making them global environmental issues. Accordingly, the water cycle management deserves a revision in its approach, integrating the concept of circular economy within an efficient and sustainable management of water resources and the design of wastewater facilities. In this sense, newly engineered decentralized facilities have emerged as a viable option for the treatment of segregated wastewater flows. The design has not only integrated the wastewater treatment function, but also resource recovery, such as water reclamation for agricultural and irrigation activities, fertigation, fertilization and energy sustainability. Based on these premises, the concept of decentralized wastewater management deserves the same degree of attention and development that has so far been reserved for conventional centralized management systems. Therefore, this paper proposes a progressive substitution of the business-as-usual scenario or centralized system by applying a small-scale wastewater management scheme performing a more efficient resource and water recovery in a medium-sized 4-5-star resort hotel. The spotlight was a membrane technology for the anaerobic digestion of the blackwater instead of the greywater treatment. A favorable environmental profile was found for the decentralized scenario under two circumstances: a large system boundary including the beneficial environmental impacts of the products and, based on the results obtained from a sensitivity analysis, an energy demand for the operation of the AnMBR lower than 2 kWh·m-3. The global warming potential results (around 9%) were even for such high demand and much larger benefits were obtained for other impact categories (94% for SOD and 98% for LU). Nevertheless, the operation (gate-to-gate approach) of these on-site recovery facilities is far from being optimized and further research should follow to decrease the 39.8% difference in the global warming potential between decentralized and centralized systems.


Assuntos
Águas Residuárias , Purificação da Água , Meio Ambiente , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Recursos Hídricos
6.
J Environ Manage ; 251: 109555, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539697

RESUMO

To determine the most efficient pretreatment for ceramic membrane filtration (CMF) of primary clarifier effluent (PE), the effectiveness of ozonation and coagulation was investigated from the viewpoint of both virus removal and mitigation of membrane fouling. Our results showed virus removal by coagulation to be more efficient as a CMF pretreatment, whereas ozonation showed better efficiency when used as a CMF posttreatment. The effect of ozonation and coagulation on ceramic membrane fouling was investigated during short-term operation. With the use of coagulation before CMF (PACl + CMF), irreversible fouling resistance was 0.5 × 1011 m-1 at a dosage of 150 mg/L of polyaluminum chloride (PACl), which was 10 times lower than when ozonation was used as a pretreatment to CMF (O3+CMF) (0.7 × 1012 m-1 at 50 mg-O3/L). This result indicates coagulation to be more efficient than ozonation for mitigating ceramic membrane fouling. Based on these results, the process sustainability of PACl + CMF was then investigated during longer-term operation. At a dosage of 150 mg/L of PACl, the PACl + CMF process could be sustainably operated for 120 h without any need for chemically enhanced backwashing, which was twice as long as for PACl dosages of 50 and 100 mg/L. Coagulation is thus a more efficient pretreatment for CMF of PE from the viewpoint of both virus removal and mitigation of ceramic membrane fouling. The hygienic safety of reclaimed water can be further improved if ozonation is used as a CMF posttreatment.


Assuntos
Ozônio , Purificação da Água , Cerâmica , Membranas Artificiais , Águas Residuárias
7.
Int J Phytoremediation ; 19(6): 563-571, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977297

RESUMO

In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.


Assuntos
Peixes/metabolismo , Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Irrigação Agrícola , Animais , Biodegradação Ambiental , Itália , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/instrumentação
8.
Environ Monit Assess ; 189(9): 442, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791526

RESUMO

The objective of this work was to evaluate the biological effect of the secondary effluent (SE) of a wastewater treatment plant and reclaimed water treated via ultrafiltration (UF) followed by either reverse osmosis (RO) membrane filtration or nanofiltration (NF) to be used for environmental use by comparing the results of algal growth inhibition tests of concentrated samples of the SE and permeates of RO and NF with those of six rivers in southern Okinawa Island. Although the SE water had no adverse effects on the growth of the algae Pseudokirchneriella subcapitata, it could lead to water quality degradation of rivers in terms of its toxic unit value, whereas the use of RO and NF permeates would not lead to such degradation. The recharge of rivers, into which domestic wastewater and livestock effluents might be discharged in southern Okinawa Island, with reclaimed water subjected to advanced treatment could dilute the concentrations of chemicals that cause biological effects and improve the water quality of the rivers, based on the results of the bioassay using P. subcapitata. Comparing the results of bioassays of reclaimed water with those of the ambient water at a site might be effective in assessing the water quality of reclaimed water for environmental use at the site.


Assuntos
Monitoramento Ambiental , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Filtração/métodos , Rios/química , Ultrafiltração , Águas Residuárias , Purificação da Água/métodos , Qualidade da Água/normas
9.
Environ Monit Assess ; 188(5): 287, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27075312

RESUMO

This study examines the benefits and risks associated with various types of wastewater recycled for vegetable garden irrigation and proposes the best water source in terms of its water quality impact on crop yields. The aim was to evaluate the usability of river, rain, gully pot, real grey and artificial grey waters to water crops. The objectives were to evaluate variables and boundary conditions influencing the growth of chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group 'De Cayenne') both in the laboratory and in the greenhouse. A few irrigated chilli plants suffered from excess of some nutrients, which led to a relatively poor harvest. High levels of trace minerals and heavy metals were detected in river water, gully pot effluent and greywater. However, no significant differences in plant yields were observed, if compared with standards and other yields worldwide. The highest yields were associated with river water both in the laboratory and in the greenhouse. Plant productivity was unaffected by water quality due to the high manganese, potassium, cadmium and copper levels of the greywater. These results indicate the potential of river water and gully pot effluent as viable alternatives to potable water for irrigation in agriculture.


Assuntos
Irrigação Agrícola/métodos , Capsicum/crescimento & desenvolvimento , Monitoramento Ambiental , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Agricultura/métodos , Cádmio , Produtos Agrícolas , Água Potável , Água Doce , Metais Pesados/análise , Chuva/química , Rios/química , Águas Residuárias/química
10.
Biofouling ; 31(2): 173-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706000

RESUMO

The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.


Assuntos
Bactérias/classificação , Biofilmes , Incrustação Biológica , Instalações de Eliminação de Resíduos , Purificação da Água/métodos , Bactérias/crescimento & desenvolvimento , Osmose , RNA Ribossômico 16S/genética , Espanha
11.
Ecotoxicol Environ Saf ; 121: 22-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26188702

RESUMO

Coagulation-nanofiltration based integrated treatment scheme was employed in the present study to maximize the removal of toxic Cr(VI) species from tannery effluents. The coagulation pretreatment step using aluminium sulphate hexadecahydrate (alum) was optimized by response surface methodology (RSM). A nanofiltration unit was integrated with this coagulation pre-treatment unit and the resulting flux decline and permeate quality were investigated. Herein, the coagulation was conducted under response surface-optimized operating conditions. The hybrid process demonstrated high chromium(VI) removal efficiency over 98%. Besides, fouling of two of the tested nanofiltration membranes (NF1 and NF3) was relatively mitigated after feed pretreatment. Nanofiltration permeation fluxes as high as 80-100L/m(2)h were thereby obtained. The resulting permeate stream quality post nanofiltration (NF3) was found to be suitable for effective reuse in tanneries, keeping the Cr(VI) concentration (0.13mg/L), Biochemical Oxygen Demand (BOD) (65mg/L), Chemical Oxygen Demand (COD) (142mg/L), Total Dissolved Solids (TDS) (108mg/L), Total Solids (TS) (86mg/L) and conductivity levels (14mho/cm) in perspective. The process water reclaiming ability of nanofiltration was thereby substantiated and the effectiveness of the proposed hybrid system was thus affirmed.


Assuntos
Filtração , Resíduos Industriais , Nanotecnologia/métodos , Purificação da Água/métodos , Água/química , Compostos de Alúmen/química , Análise da Demanda Biológica de Oxigênio , Cromo/análise , Poluentes Químicos da Água/análise
12.
Int J Phytoremediation ; 17(11): 1038-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25436659

RESUMO

The water conservation topic is likely to become increasingly important and alternative water resources employment should be considered as one possible response to the challenges of fresh water demand and environmental protection; among alternative water sources, municipal wastewaters represent one of the most profitable source but in order to reuse them they need adequate and advanced depuration techniques, such as the use of Integrated System of Phytodepuration (ISP). Across a 3-year sampling period, the performances of an ISP within the Natural Park of the Sile River in the Northern Italy were evaluated, analyzing raw wastewater and final effluent characteristics according to the recommendations of European and Italian legislation. The investigated ISP represents one of the first attempts designed in Italy to improve the efficiency of an existing wastewater treatment plant, able to serve 8000 equivalent inhabitants. The results obtained during the 3 years of analysis show that the designed ISP is characterized by a general efficiency value higher than 87% for TSS removal, 79% for TN, 91% for BOD5 and 86% for COD; moreover the ISP final effluent is characterized by a quality not only suited for release into surface waters but also for irrigation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Biodegradação Ambiental , Itália , Rios/química
13.
Int J Phytoremediation ; 17(12): 1227-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942603

RESUMO

The effluents deriving from agricultural industries are sources of wastewater sensibly different from common civil wastewater treatment plants effluents, because they are characterized by significant amounts of nutrients and organic load. Agricultural industries require considerable water volumes for processing the farm products, in doing so generating huge volumes of wastewater, with high concentration of chemical oxygen demand (COD), nitrogen (N) and phosphorus (P). Advanced and low cost techniques for water depuration are required in such circumstances, as the use of Integrated System of Phytodepuration (ISP). In the present work, three different case studies (a dairy, a pig feedlot and a vinegar industry) are investigated: the performances of the ISPs were evaluated analyzing raw wastewaters and final effluents over a period ranging from 2 to 4 years. The results obtained show that the designed ISPs are characterized by a mean efficiency value higher than 85% for COD removal, 73% for N and 85% for P. Moreover, for the pig feedlot the ISP final effluent is characterized by a quality level not only suited for the release into surface waters but also for irrigation, while for the other two case studies is possible to release the final effluent in surface water.


Assuntos
Criação de Animais Domésticos , Indústria de Laticínios , Recuperação e Remediação Ambiental/métodos , Indústria de Processamento de Alimentos , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Ácido Acético , Biodegradação Ambiental , Itália , México
14.
Membranes (Basel) ; 14(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39057654

RESUMO

Organic micropollutants (OMPs) present in water and wastewater are in the spotlight because of their potentially harmful effects even at low concentrations and the difficulties of their elimination in urban wastewater treatment plants (UWWTPs). This study explores the impact of some membrane filtration processes on the removal of a group of 11 OMPs with an eye on the effects of two pretreatments (i.e., coagulation and adsorption onto powdered activated carbon (PAC)) and the adsorption of OMPs onto the membranes on the overall removal. For this purpose, ultrafiltration (UF) and nanofiltration (NF) experiments were conducted with selected OMPs spiked in ultrapure water and secondary effluents from UWWTPs. It was observed that the adsorption of OMPs onto the membranes was influenced by the characteristics of the membranes, as well as the presence of effluent organic matter (EfOM). Since adsorption was the dominant mechanism for the rejection of OMPs by UF membranes, a study of the adsorption equilibrium of the micropollutants using UF membrane pieces as the adsorbent was conducted. The adsorption isotherms for the most hydrophobic OMPs fitted the Langmuir model. The efficiency of coagulation and powdered activated carbon (PAC) adsorption coupled with UF were also investigated. Both pretreatments alleviated membrane fouling and improved the rejection of organic and inorganic matter. The PAC pretreatment significantly improved the removal of OMPs in the combined PAC/UF process. The best options for achieving reclaimed water with satisfactory physicochemical quality, nearly devoid of OMPs and microorganisms, and suitable for diverse reuse purposes are either the NF treatment or the combination of PAC/UF.

15.
Bioresour Technol ; 408: 131208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098355

RESUMO

Immobilized microalgae biotechnologies can conserve water and space by low-carbon wastewater treatment and resource recovery in a recirculating aquaculture system (RAS). However, technical process parameters have been unoptimized considering the mutual interaction between factors. In this study, machine learning optimized the parameters of alginate-immobilized Chlorella vulgaris (C. vulgaris), that is, 474 µmol/(m2·s) of light intensity, 23 × 106 cells/mL for initial cell number, and 2.07 mm particle size. Importantly, under continuous illumination, the immobilized C. vulgaris and microalgal-bacterial consortium improved water purification and biomass reutilization. Transcriptomics of C. vulgaris showed enhanced nitrogen removal by increasing pyridine nucleotide and lipid accumulation via enhanced triacylglycerol synthesis. Symbiotic bacteria upregulated genes for nitrate reduction and organic matter degradation, which stimulated biomass accumulation through CO2 fixation and starch synthesis. The recoverable microalgae (1.94 g/L biomass, 47 % protein, 26.23 % lipids), struvite (64.79 % phosphorus), and alginate (79.52 %) every two weeks demonstrates a low-carbon resource recovery in RAS.


Assuntos
Alginatos , Aquicultura , Biomassa , Carbono , Chlorella vulgaris , Aprendizado de Máquina , Águas Residuárias , Purificação da Água , Chlorella vulgaris/metabolismo , Aquicultura/métodos , Carbono/metabolismo , Purificação da Água/métodos , Alginatos/química , Microalgas/metabolismo , Células Imobilizadas/metabolismo , Nitrogênio/metabolismo
16.
Water Res ; 267: 122429, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39303574

RESUMO

In this study, we evaluated the ability of various pilot-scale treatment train combinations to meet the microbial requirements of the new European non-potable water reuse regulation 2020/741. The study utilized non-disinfected secondary effluent from the wastewater treatment plant in Schweinfurt, Germany, as feedwater for two pilot-scale treatment trains. The first, a reference treatment train (Train A), consisted of filtration and UV disinfection as specified for reclaimed water class A in the EU regulation. The second, an advanced treatment train (Train B), included ceramic ultrafiltration (UF), ozonation, biological activated carbon filtration (BAC), and final UV disinfection. Based on a Monte Carlo simulation for Train A, the EU requirements for pathogen removal were not met when an average UV dose of 400-600 J m-2 was applied. This shortcoming was likely due to a moderate transmittance range (50-65 %), resulting in decreased UV fluence. These findings suggest that operational conditions for disinfection should be more clearly specified to ensure consistent pathogen inactivation both during validation and regular operation. In contrast, treatment train B successfully met the requirements of the EU regulations by reducing pathogens to below the detection limit. The UF membrane demonstrated a positive effect on the overall log reduction values (LRVs) throughout the water reclamation system. It also enhanced the efficiency of downstream processes, such as ozonation and UV disinfection, by lowering total suspended solids and turbidity. However, even without the UF membrane, treatment train B was still able to meet the pathogenic EU requirements for non-potable reuse applications. Furthermore, the study observed that the inclusion of biologically activated carbon (BAC) filtration requires a final disinfection step (e.g., UV disinfection) to prevent the potential occurrence of heterotrophic bacteria that proliferate in the BAC filter. For process validation it is recommended to use at least two different virus surrogates (MS2 and PhiX174), rather than just one or total coliphage as required in the EU regulation.

17.
Bioresour Technol ; 388: 129794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734483

RESUMO

A trade-off between greenhouse emissions (direct and indirect) and operational costs in the water treatment sector is of great importance, although only few literature studies exist. The paper presents a comprehensive experimental study on a Membrane Bioreactor (MBR) pilot plant at the Water Resource Recovery Facility of Palermo University (Italy). The MBR pilot plant was aimed at reducing carbon footprint while producing water suitable for water reuse in agriculture. Multiple scenarios were assessed to unveil the best operational variables including the assessment of the reclaimed water quality index for water reuse. Results showed the lowest operational costs for the MBR of 5.05 € cent/m3 with Class B according to 741/2020 European legislation. Results revealed optimised values, in terms of airflow rate and backwash frequency, of 0.8 m3/m2/h and 12 times/h, respectively. The highest N2O emission was measured in correspondence of scenario S5 (airflow rate of 1.6 m3/m2/h) with 0.40 mg N2O-N/m2/h in agreement with previous literature studies. The obtained results could effectively address the operators to find a trade-off between operational costs and water quality.


Assuntos
Gases de Efeito Estufa , Humanos , Eliminação de Resíduos Líquidos , União Europeia , Agricultura , Itália
18.
Sci Total Environ ; 905: 167224, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739075

RESUMO

Urbanisation, population growth, and climate change have put unprecedented pressure on water resources, leading to a global water crisis and the need for water reuse. However, water reuse is unsafe unless persistent chemical pollutants are removed from reclaimed water. State-of-the-art technologies for the reduction of persistent chemical pollutants in wastewater typically impose high operational and energy costs and potentially generate toxic by-products (e.g., bromate from ozonation). Nature-base solutions are preferred to these technologies for their lower environmental impact. However, so far, bio-based tertiary wastewater treatments have been inefficient for industrial-scale applications. Moreover, they often demand significant financial investment and large infrastructure, undermining sustainability objectives. Here, we present a scalable, low-cost, low-carbon, and retrofittable nature-inspired solution to remove persistent chemical pollutants (pharmaceutical, pesticides and industrial chemicals). We showed Daphnia's removal efficiency of individual chemicals and chemicals from wastewater at laboratory scale ranging between 50 % for PFOS and 90 % for diclofenac. We validated the removal efficiency of diclofenac at prototype scale, showing sustained performance over four weeks in outdoor seminatural conditions. A techno-commercial analysis on the Daphnia-based technology suggested several technical, commercial and sustainability advantages over established and emerging treatments at comparable removal efficiency, benchmarked on available data on individual chemicals. Further testing of the technology is underway in open flow environments holding real wastewater. The technology has the potential to improve the quality of wastewater effluent, meeting requirements to produce water appropriate for reuse in irrigation, industrial application, and household use. By preventing persistent chemicals from entering waterways, this technology has the potential to maximise the shift to clean growth, enabling water reuse, reducing resource depletion and preventing environmental pollution.


Assuntos
Cladocera , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Animais , Águas Residuárias , Eliminação de Resíduos Líquidos , Diclofenaco , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 903: 166196, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572918

RESUMO

Sustainable water management is one of the research areas that is gaining importance worldwide today. In this work, water footprint assessment was conducted in a wastewater treatment plant before (called as WWTP-C for the year of 2018) and after (called as WWTP-WR for the year of 2021) adding the water reclamation unit, using the method proposed by Water Footprint Network (WFN). Additionally, the impact of water reclamation on blue water footprint (WFblue) and grey water footprint (WFgrey) was investigated from an environmental sustainability point of view. Water footprint of WWTP-C and WWTP-WR was evaluated as 2.2 m3 and 2.3 m3; respectively. While energy consumption and sludge treatment were determined as the major components for WFblue, total nitrogen (TN) and total phosphorus (TP) were the most limiting pollutants for WFgrey. Environmental benefit of water reclamation to reducing the WFgrey was determined as 44 % for the year of 2021. The sensitivity analysis results showed that high variability in the values of maximum allowable concentration of pollutants by national regulations has significantly affect the sustainability of WFgrey.

20.
Sci Total Environ ; 895: 165185, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385512

RESUMO

A full-scale membrane bioreactor (MBR) with ultrafiltration, followed by granular activated carbon (GAC), was examined to determine the potential of reusing treated water as a source of drinking water or for irrigation. The major part of the bacteria removal took place in the MBR, whereas the GAC removed substantial amounts of organic micropollutants. Annual variations in inflow and infiltration resulted in a concentrated influent during summer and a diluted influent in the winter. The removal of E. coli was high throughout the process (average log removal 5.8), with effluent concentrations meeting the threshold for class B water standards for irrigation (EU 2020/741) but exceeding those for drinking water in Sweden. The total bacterial concentration increased over the GAC, indicating the growth and release of bacteria; however, E. coli concentrations declined. The effluent concentrations of metals met the Swedish criteria for drinking water. The removal of organic micropollutants decreased during the initial operation of the treatment plant, but after 1 year and 3 months, corresponding to 15,000 bed volumes, the removal increased. Maturation of the biofilm in the GAC filters might have resulted in biodegradation of certain organic micropollutants, in combination with bioregeneration. Although there is no legislation in Scandinavia with regard to many organic micropollutants in drinking water and water for irrigation, the effluent concentrations were generally in the same order of magnitude as to those in Swedish source waters that are used for drinking water production.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Carvão Vegetal , Suécia , Escherichia coli , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Reatores Biológicos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA