Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(26): E6085-E6094, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891679

RESUMO

Abiotic stresses in plants are often transient, and the recovery phase following stress removal is critical. Flooding, a major abiotic stress that negatively impacts plant biodiversity and agriculture, is a sequential stress where tolerance is strongly dependent on viability underwater and during the postflooding period. Here we show that in Arabidopsis thaliana accessions (Bay-0 and Lp2-6), different rates of submergence recovery correlate with submergence tolerance and fecundity. A genome-wide assessment of ribosome-associated transcripts in Bay-0 and Lp2-6 revealed a signaling network regulating recovery processes. Differential recovery between the accessions was related to the activity of three genes: RESPIRATORY BURST OXIDASE HOMOLOG D, SENESCENCE-ASSOCIATED GENE113, and ORESARA1, which function in a regulatory network involving a reactive oxygen species (ROS) burst upon desubmergence and the hormones abscisic acid and ethylene. This regulatory module controls ROS homeostasis, stomatal aperture, and chlorophyll degradation during submergence recovery. This work uncovers a signaling network that regulates recovery processes following flooding to hasten the return to prestress homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , NADPH Oxidases/genética
2.
Proc Natl Acad Sci U S A ; 115(47): E11178-E11187, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397148

RESUMO

The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas/genética , Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Dioxigenases/genética , Secas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Ativação Transcricional/genética
3.
Plant Mol Biol ; 99(4-5): 461-476, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710225

RESUMO

KEY MESSAGE: ABA/GA4 ratio, stress resistance, carbon and nitrogen metabolism, and chromatin structure play important roles in vigour differences of seeds located at different maize ear positions. Seed vigour, which ensures rapid and uniform field emergence across diverse environments, differs at different maize ear positions. However, little is known regarding the associated mechanisms. In this study, we determined that seed vigour, stress resistance, and carbon and nitrogen metabolism were higher in seeds from middle and bottom section of the ear, while the ABA/GA4 ratio in the embryos was significantly lower. Compared with the seeds subjected to repeated pollination during silking, less variation in seed vigour and the ABA/GA4 ratio in the embryos was observed in seeds at different ear positions subjected to single pollination after complete silking. This indicated that single pollination can reduce, but not eliminate, the differences in seed vigour at different ear positions. RNA-seq analysis indicated that the seed vigour differences at the different locations of the maize ears of the single pollinated treatment were related to carbon and nitrogen metabolism. In contrast, the differences in seed vigour under repeated pollination were related to chromatin structure. The present study contributes to our understanding of the mechanisms underlying differences in seed vigour at different positions on the maize ear.


Assuntos
Adaptação Fisiológica , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico , Zea mays/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Giberelinas/metabolismo , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/genética , Polinização , RNA de Plantas/análise , Sementes/genética , Zea mays/genética
4.
Plant Mol Biol ; 99(3): 205-217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30627860

RESUMO

KEY MESSAGE: We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/genética , Polygonatum/genética , Rizoma/genética , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Análise por Conglomerados , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Medicina Tradicional Chinesa , Oxilipinas/metabolismo , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polygonatum/metabolismo , Rizoma/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esteroides Heterocíclicos/metabolismo , Triptofano Sintase/metabolismo
5.
Plant Physiol ; 177(3): 1286-1302, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760199

RESUMO

Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.


Assuntos
Frutas/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escuridão , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
6.
Plant Physiol ; 177(4): 1650-1665, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884679

RESUMO

The water stress-associated hormone abscisic acid (ABA) acts through a well-defined signal transduction cascade to mediate downstream transcriptional events important for acclimation to stress. Although ABA signaling is known to function in specific tissues to regulate root growth, little is understood regarding the spatial pattern of ABA-mediated transcriptional regulation. Here, we describe the construction and evaluation of an ABSCISIC ACID RESPONSIVE ELEMENT (ABRE)-based synthetic promoter reporter that reveals the transcriptional response of tissues to different levels of exogenous ABA and stresses. Genome-scale yeast one-hybrid screens complemented these approaches and revealed how promoter sequence and architecture affect the recruitment of diverse transcription factors (TFs) to the ABRE. Our analysis also revealed ABA-independent activity of the ABRE-reporter under nonstress conditions, with expression being enriched at the quiescent center and stem cell niche. We show that the WUSCHEL RELATED HOMEOBOX5 and NAC DOMAIN PROTEIN13 TFs regulate QC/SCN expression of the ABRE reporter, which highlights the convergence of developmental and DNA-damage signaling pathways onto this cis-element in the absence of water stress. This work establishes a tool to study the spatial pattern of ABA-mediated transcriptional regulation and a repertoire of TF-ABRE interactions that contribute to the developmental and environmental control of gene expression in roots.


Assuntos
Ácido Abscísico/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plantas Geneticamente Modificadas , Elementos de Resposta , Transdução de Sinais/genética , Análise Espaço-Temporal , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética
7.
Plant Cell ; 28(10): 2528-2544, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697789

RESUMO

The phytohormone abscisic acid (ABA) plays crucial roles in various physiological processes, including responses to abiotic stresses, in plants. Recently, multiple ABA transporters were identified. The loss-of-function and gain-of-function mutants of these transporters show altered ABA sensitivity and stomata regulation, highlighting the importance of ABA transporters in ABA-mediated processes. However, how the activity of these transporters is regulated remains elusive. Here, we show that spatial regulation of ATP BINDING CASETTE G25 (ABCG25), an ABA exporter, is an important mechanism controlling its activity. ABCG25, as a soluble green fluorescent protein (sGFP) fusion, was subject to posttranslational regulation via clathrin-dependent and adaptor protein complex-2-dependent endocytosis followed by trafficking to the vacuole. The levels of sGFP:ABCG25 at the plasma membrane (PM) were regulated by abiotic stresses and exogenously applied ABA; PM-localized sGFP:ABCG25 decreased under abiotic stress conditions via activation of endocytosis in an ABA-independent manner, but increased upon application of exogenous ABA via activation of recycling from early endosomes in an ABA-dependent manner. Based on these findings, we propose that the spatial regulation of ABCG25 is an important component of the mechanism by which plants fine-tune cellular ABA levels according to cellular and environmental conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
8.
Physiol Plant ; 165(3): 644-663, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29766507

RESUMO

Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near-isogenic line) were subjected to heat stress of 40°C after pre-foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non-structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.


Assuntos
Ácido Abscísico/metabolismo , Oryza/metabolismo , Pólen/metabolismo , Ácido Abscísico/genética , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Temperatura
9.
Proc Natl Acad Sci U S A ; 113(24): 6791-6, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247417

RESUMO

Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis WUE was assessed by three independent approaches involving gravimetric analyses, (13)C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia , Água/metabolismo , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Folhas de Planta/genética
10.
PLoS Genet ; 12(11): e1006416, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812104

RESUMO

The function of miR165/166 in plant growth and development has been extensively studied, however, its roles in abiotic stress responses remain largely unknown. Here, we report that reduction in the expression of miR165/166 conferred a drought and cold resistance phenotype and hypersensitivity to ABA during seed germination and post-germination seedling development. We further show that the ABA hypersensitive phenotype is associated with a changed transcript abundance of ABA-responsive genes and a higher expression level of ABI4, which can be directly regulated by a miR165/166 target. Additionally, we found that reduction in miR165/166 expression leads to elevated ABA levels, which occurs at least partially through the increased expression of BG1, a gene that is directly regulated by a miR165/166 target. Taken together, our results uncover a novel role for miR165/166 in the regulation of ABA and abiotic stress responses and control of ABA homeostasis.


Assuntos
Ácido Abscísico/genética , Arabidopsis/genética , MicroRNAs/genética , Arabidopsis/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas , Germinação/genética , Homeostase/genética , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética
11.
PLoS Genet ; 12(3): e1005835, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943172

RESUMO

The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1/genética , Ácido Abscísico/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/biossíntese , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
12.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646545

RESUMO

Abscisic acid (ABA) plays crucial roles in plant development and adaption to environmental stresses. The ABA-responsive element binding protein/ABRE-binding factor and ABA INSENSITIVE 5 (AREB/ABF/ABI5) gene subfamily members, which belong to the basic domain/leucine zipper (bZIP) transcription factors family, participate in the ABA-mediated signaling pathway by regulating the expression of their target genes. However, information about potato (Solanum tuberosum) AREB/ABF/ABI5 subfamily members remains scarce. Here, seven putative AREB/ABF/ABI5 members were identified in the potato genome. Sequences alignment revealed that these members shared high protein sequence similarity, especially in the bZIP region, indicating that they might possess overlapping roles in regulating gene expression. Subcellular localization analysis illustrated that all seven AREB/ABF/ABI5 members were localized in the nucleus. Transactivation activity assays in yeast demonstrated that these AREB/ABF/ABI5 members possessed distinct transcriptional activity. Electrophoretic mobility shift assays (EMSA) confirmed that all of these AREB/ABF/ABI5 members could have an affinity to ABRE in vitro. The expression patterns of these AREB/ABF/ABI5 genes showed that they were in response to ABA or osmotic stresses in varying degrees. Moreover, most AREB/ABF/ABI5 genes were induced during stolon swelling. Overall, these results provide the first comprehensive identification of the potato AREB/ABF/ABI5 subfamily and would facilitate further functional characterization of these subfamily members in future work.


Assuntos
Ácido Abscísico/genética , Genoma de Planta/genética , Desenvolvimento Vegetal/genética , Solanum tuberosum/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Zíper de Leucina/genética , Pressão Osmótica , Plantas Geneticamente Modificadas , Ligação Proteica/genética , Estresse Fisiológico/genética
13.
Int J Mol Sci ; 20(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151316

RESUMO

The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.


Assuntos
Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Ácido Abscísico/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento
14.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072025

RESUMO

Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in drought stress responses. However, the function of maize ASR genes in enhancing drought tolerance is not known. Here, nine maize ASR members were cloned, and the molecular features of these genes were analyzed. Phenotype results of overexpression of maize ZmASR3 gene in Arabidopsis showed lower malondialdehyde (MDA) levels and higher relative water content (RWC) and proline content than the wild type under drought conditions, demonstrating that ZmASR3 can improve drought tolerance. Further experiments showed that ZmASR3-overexpressing transgenic lines displayed increased stomatal closure and reduced reactive oxygen species (ROS) accumulation by increasing the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) under drought conditions. Moreover, overexpression of ZmASR3 in Arabidopsis increased ABA content and reduced sensitivity to exogenous ABA in both the germination and post-germination stages. In addition, the ROS-related, stress-responsive, and ABA-dependent pathway genes were activated in transgenic lines under drought stress. Taken together, these results suggest that ZmASR3 acts as a positive regulator of drought tolerance in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secas , Fatores Genéricos de Transcrição/genética , Zea mays/genética , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Catalase/genética , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Zea mays/metabolismo
15.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126160

RESUMO

Abscisic acid (ABA) plays important roles in positively or negatively regulating plant disease resistance to pathogens. Here, we reassess the role of endogenous and exogenous ABA by using: 35S::ABA2, a previously reported transgenic Arabidopsis line with increased endogenous ABA levels; aba2-1, a previously reported ABA2 mutant with reduced endogenous ABA levels; and exogenous application of ABA. We found that bacterial susceptibility promoted by exogenous ABA was suppressed in 35S::ABA2 plants. The 35S::ABA2 and aba2-1 plants displayed elevated and reduced levels, respectively, of bacterial flagellin peptide (flg22)-induced H2O2. Surprisingly, ABA pre-treatment reduced flg22-induced H2O2 generation. Exogenous, but not endogenous ABA, increased catalase activity. Loss of nicotinamide adenine dinucleotide phosphate oxidase genes, RBOHD and RBOHF, restored exogenous ABA-promoted bacterial susceptibility of 35S::ABA2 transgenic plants. In addition, endogenous and exogenous ABA had similar effects on callose deposition and salicylic acid (SA) signaling. These results reveal an underlying difference between endogenous and exogenous ABA in regulating plant defense responses. Given that some plant pathogens are able to synthesize ABA and affect endogenous ABA levels in plants, our results highlight the importance of reactive oxygen species in the dual function of ABA during plant-pathogen interactions.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
16.
Plant Mol Biol ; 96(6): 543-561, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29564697

RESUMO

KEY MESSAGE: The understanding of roles of bZIP factors in biological processes during plant development and under abiotic stresses requires the detailed mechanistic knowledge of behaviour of TFs. Basic leucine zipper (bZIP) transcription factors (TFs) play key roles in the regulation of grain development and plant responses to abiotic stresses. We investigated the role and molecular mechanisms of function of the TabZIP2 gene isolated from drought-stressed wheat plants. Molecular characterisation of TabZIP2 and derived protein included analyses of gene expression and its target promoter, and the influence of interacting partners on the target promoter activation. Two interacting partners of TabZIP2, the 14-3-3 protein, TaWIN1 and the bZIP transcription factor TaABI5L, were identified in a Y2H screen. We established that under elevated ABA levels the activity of TabZIP2 was negatively regulated by the TaWIN1 protein and positively regulated by the SnRK3/CIPK protein kinase WPK4, reported previously to be responsive to nutrient starvation. The physical interaction between the TaWIN1 and the WPK4 was detected. We also compared the influence of homo- and hetero-dimerisation of TabZIP2 and TaABI5L on DNA binding. TabZIP2 gene functional analyses were performed using drought-inducible overexpression of TabZIP2 in transgenic wheat. Transgenic plants grown under moderate drought during flowering, were smaller than control plants, and had fewer spikes and seeds per plant. However, a single seed weight was increased compared to single seed weights of control plants in three of four evaluated transgenic lines. The observed phenotypes of transgenic plants and the regulation of TabZIP2 activity by nutrient starvation-responsive WPK4, suggest that the TabZIP2 could be the part of a signalling pathway, which controls the rearrangement of carbohydrate and nutrient flows in plant organs in response to drought.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas Quinases/genética , Triticum/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Ácido Abscísico/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico/genética , Triticum/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Planta ; 248(4): 837-847, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936547

RESUMO

MAIN CONCLUSION: Bud-break assays under forced growth conditions suggest that a drop in ABA content and an increase in sugars are common features in the sprouting of paradormant (PD) and endodormant (ED) grapevine buds. However, increases in cell division and in respiration are unique characteristics of the ED budding. In tropical and subtropical regions where the variations in day length and temperatures are minor throughout the year, the rupture of grapevine buds can be achieved during the current growing season given rise to a double-cropping system annually. However, it is unknown whether the breaking buds are in the paradormancy (PD) or endodormancy (ED) stage. In this study, we compared the breakage of PD and ED buds under conditions of forced growth. To do this, the expression of genes related to the metabolism of phytohormones and sugars, and of relevant physiological functions such as respiration and cell division was analyzed temporally throughout the incubation period in both types of buds. An early fall in the expression of the ABA biosynthesis gene (VvNCED1) and increases in genes related to sugar metabolism and transports were observed during the incubation period in both types of buds. However, while in the PD buds, the genes related to respiration and the cell cycle did not undergo significant changes in their expression during the incubation period, in the ED buds, the expression of these genes together with those related to auxin and cytokinin biosynthesis experienced a large increase. The results suggest that a drop in ABA content and an increase in sugars are early signals for the onset of bud break in both PD and ED vines, while the increase in respiration and cell division are unique characteristics of the ED buds, which reflect its transition from a resting state to a state of active growth.


Assuntos
Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Reguladores de Crescimento de Plantas/genética , Vitis/crescimento & desenvolvimento , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Ciclo Celular/genética , Citocininas/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Vitis/genética
18.
Physiol Plant ; 162(4): 439-454, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29027659

RESUMO

WRKY transcription factors are transcriptional regulators of signaling pathways involved in biotic and abiotic stress responses. In this study, we report that ectopic expression of the GhWRKY6-like gene significantly improved salt tolerance in Arabidopsis thaliana while silencing the GhWRKY6-like increase the sensitivity to abiotic stresses in cotton. GhWRKY6-like was localized to the nucleus. Expression of GhWRKY6-like was remarkably induced by salt, polyethylene glycol (PEG) and abscisic acid (ABA) treatments. For further characterization, the GhWRKY6-like gene was cloned and transformed into Arabidopsis. Our findings showed that the germination rate and root length were significantly improved in plants overexpressing GhWRKY6-like vs wild type (WT) under salt, mannitol and ABA treatments. Additionally, the overexpressing lines showed greater salt tolerance than WT plants in soil. In addition, overexpressing plants accumulated less H2 O2 and malondialdehyde (MDA), while higher proline content, superoxide dismutase (SOD) and peroxidase (POD) activities were detected under salt and osmotic stresses. In contrast, virus-induced gene silencing (VIGS) of GhWRKY6-like in cotton showed enhanced sensitivity compared to WT plants during salt and drought stresses. Additionally, expression analysis of stress-responsive genes in GhWRKY6-like Arabidopsis revealed that there was increased expression of genes involved in the ABA signaling pathway (AtABF4, AtABI5 and AtMYC2) and osmotic stress (AtSOS2, AtRD29a and AtRD29b). Our results revealed that GhWRKY6-like enhanced salt tolerance in Arabidopsis by scavenging reactive oxygen species and regulating the ABA signaling pathway. We suggest that overexpression of the GhWRKY6-like gene in cotton will enhance tolerance against salt, drought and osmotic stresses.


Assuntos
Ácido Abscísico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/fisiologia , Ácido Abscísico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380795

RESUMO

The SQUAMOSA promoter binding protein (SBP)-box gene family is a plant-specific transcription factor family. This family plays a crucial role in plant growth and development. In this study, 20 SBP-box genes were identified in the tea plant genome and classified into six groups. The genes in each group shared similar exon-intron structures and motif positions. Expression pattern analyses in five different tissues demonstrated that expression in the buds and leaves was higher than that in other tissues. The cis-elements and expression patterns of the CsSBP genes suggested that the CsSBP genes play active roles in abiotic stress responses; these responses may depend on the abscisic acid (ABA), gibberellic acid (GA), and methyl jasmonate (MeJA) signaling pathways. Our work provides a comprehensive understanding of the CsSBP family and will aid in genetically improving tea plants.


Assuntos
Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/biossíntese , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Camellia sinensis/genética , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
20.
Int J Mol Sci ; 19(7)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004422

RESUMO

The phytohormone abscisic acid (ABA) regulates plant growth, the developmental process, and abiotic stresses. ABA signaling is induced in response to mediate plant acclimation to environmental challenges, including high salinity and drought. The ABA-binding receptors (RCAR/PYR1/PYL), composing of 14 members, are the core components of the ABA-signaling pathway. Here, we observed that the three subfamilies within the RCARs showed different expression patterns at the basal and exogenous ABA levels. Subsequently, we generated transgenic plants overexpressing subfamily III, RCAR11⁻RCAR14, respectively. The transgenic plants showed increased ABA sensitivity in seed germination and post-germination seedling establishment and root length. Further studies revealed that the overexpressing subfamily III transgenic plants enhanced drought resistance, increased water-use efficiency, and accelerated stress-responsive gene expression compared with the wild-type plants. These findings confirm that the subfamily III plays a key role in ABA-mediated developmental processes and, more importantly, is involved in drought tolerance in the ABA-dependent pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis , Arabidopsis , Germinação/genética , Proteínas de Membrana Transportadoras , Plantas Geneticamente Modificadas , Plântula , Ácido Abscísico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desidratação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA